Skip to main content
Log in

Strain effects of stability, transport, and electro-optical properties of novel Ga2TeS monolayer

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, we construct a novel Ga2TeS monolayer with the diamondene-like structure. Based on DFT + G0W0 + BSE calculations, we deeply explore the monolayer (stability, transport, and electro-optical properties) and biaxial strain effects. The Ga2TeS monolayer shows dynamical and thermal stabilities, a high electron mobility (larger than 2000 cm2∙V−1∙s−1), a moderate direct bandgap, and a superior light absorption in a broad region, respectively. More interestingly, its optical spectrum is ruled by the excitons, in which the exciton binding energy can gain a desirable value. Under the applied biaxial strains, a tunable bandgap, an improved electron mobility, and a significant enhancement for the visible-light absorption are observed in the Ga2TeS monolayer. These results suggest the Ga2TeS monolayer can be considered as a potential optoelectronic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Xu K, Yin L, Huang Y et al (2016) Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. Nanoscale 8:16802–16818

    Article  CAS  PubMed  Google Scholar 

  2. Cai H, Gu Y, Lin Y-C et al (2019) Synthesis and emerging properties of 2D layered III–VI metal chalcogenides. Appl Phys Rev 6:041312-1–041312-30

    Article  Google Scholar 

  3. Dai M, Gao C, Nie Q et al (2022) Properties, synthesis, and device applications of 2D layered InSe. Adv Mater Technol 7:2200321-1–2200321-31

    Article  Google Scholar 

  4. Yang S, Li Y, Wang X et al (2014) High performance few-layer GaS photodetector and its unique photo-response in different gas environments. Nanoscale 6:2582–2587

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Hu P, Wen Z, Wang L et al (2012) Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6:5988–5994

    Article  CAS  PubMed  Google Scholar 

  6. Lei S, Ge L, Liu Z et al (2013) Synthesis and photoresponse of large GaSe atomic layers. Nano Lett 13:2777–2781

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Wang Z, Xu K, Li Y et al (2014) Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 8:4859–4865

    Article  CAS  PubMed  Google Scholar 

  8. Singha T, Karmakar M, Kumbhakar P et al (2022) Atomically thin gallium telluride nanosheets: A new 2D material for efficient broadband nonlinear optical devices. Appl Phys Lett 120:021101-1–021101-7

    Article  ADS  Google Scholar 

  9. Feng W, Zhou X, Tian WQ et al (2015) Performance improvement of multilayer InSe transistors with optimized metal contacts. Phys Chem Chem Phys 17:3653–3658

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Cho J, Choi M et al (2022) Light-tunable polarity and erasable physisorption-induced memory effect in vertically stacked InSe/SnS2 self-powered photodetector. ACS Nano 16:17347–17355

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang HL, Hennig RG (2013) Single-layer Group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238

    Article  CAS  Google Scholar 

  12. Shi G, Kioupakis E (2015) Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett 15:6926–6931

    Article  PubMed  ADS  Google Scholar 

  13. Cheng K, Guo Y, Han N et al (2018) 2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Appl Phys Lett 112:143902

    Article  ADS  Google Scholar 

  14. Harvey A, Backes C, Gholamvand Z et al (2015) Preparation of gallium sulfide nanosheets by liquid exfoliation and their application as hydrogen evolution Catalysts. Chem Mater 27:3483–3493

    Article  CAS  Google Scholar 

  15. Kouser S, Thannikoth A, Gupta U et al (2015) 2D-GaS as a photocatalyst for water splitting to produce H2. Small 11:4723–4730

    Article  CAS  PubMed  Google Scholar 

  16. Cheng YC, Zhu ZY, Tahir M, Schwingenschlögl U (2013) Spin-orbit–induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys Lett 102:57001-1–57001-6

    Article  ADS  Google Scholar 

  17. Yin W-J, Tan H-J, Ding P-J et al (2021) Recent advances in low-dimensional Janus materials: theoretical and simulation perspectives. Mater Adv 2:7543–7558

    Article  CAS  Google Scholar 

  18. Tang X, Kou L (2022) 2D Janus transition metal dichalcogenides: Properties and applications. Phys Status Solidi B 259:2100562-1–2100562-8

    Article  ADS  Google Scholar 

  19. Pike NA, Pachter R (2022) Angular dependence of the second-order nonlinear optical response in Janus transition metal dichalcogenide monolayers. J Phys Chem C 126:16243–16252

    Article  CAS  Google Scholar 

  20. Yao Q-F, Cai J, Tong W-Y et al (2017) Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys Rev B 95:165401-1–165401-8

    Article  ADS  Google Scholar 

  21. Dong L, Lou J, Shenoy VB (2017) Large In-Plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11:8242–8248

    Article  CAS  PubMed  Google Scholar 

  22. Cai H, Guo Y, Gao H, Guo W (2019) Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy 56:33–39

    Article  CAS  Google Scholar 

  23. Jin H, Wang T, Gong Z-R et al (2018) Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer. Nanoscale 10:19310–19315

    Article  CAS  PubMed  Google Scholar 

  24. Lu A-Y, Zhu H, Xiao J et al (2017) Janus monolayers of transition metal dichalcogenides. Nat Nanotechnol 12:744–749

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Jia S, Kholmanov I et al (2017) Janus monolayer transition-metal dichalcogenides. ACS Nano 11:8192–8198

    Article  CAS  PubMed  Google Scholar 

  26. Zheng T, Lin Y-C, Yu Y et al (2021) Excitonic dynamics in Janus MoSSe and WSSe monolayers. Nano Lett 21:931–937

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Guo Y, Zhou S, Bai Y, Zhao J (2017) Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers. Appl Phys Lett 110:163102-1–163102-5

    Article  ADS  Google Scholar 

  28. da Silva R, Barbosa R, Mançano RR et al (2019) Metal chalcogenides Janus monolayers for efficient hydrogen generation by photocatalytic water splitting. ACS Appl Nano Mater 2:890–897

    Article  Google Scholar 

  29. Huang A, Shi W, Wang Z (2019) Optical properties and photocatalytic applications of two-dimensional Janus group-III monochalcogenides. J Phys Chem C 123:11388–11396

    Article  CAS  Google Scholar 

  30. Nguyen HTT, Vi VTT, Vu TV et al (2020) Janus Ga2STe monolayer under strain and electric field: theoretical prediction of electronic and optical properties. Phys E Low-Dimens Syst Nanostruct 124:114358-1–114358-7

    Article  Google Scholar 

  31. Wang P, Zong Y, Liu H et al (2021) Highly efficient photocatalytic water splitting and enhanced piezoelectric properties of 2D Janus group-III chalcogenides. J Mater Chem C 9:4989–4999

    Article  CAS  Google Scholar 

  32. Bai Y, Zhang Q, Xu N et al (2019) The Janus structures of group-III chalcogenide monolayers as promising photocatalysts for water splitting. Appl Surf Sci 478:522–531

    Article  CAS  ADS  Google Scholar 

  33. Hu L, Wei D (2018) Janus group-III chalcogenide monolayers and derivative Type-II heterojunctions as water-splitting photocatalysts with strong visible-light absorbance. J Phys Chem C 122:27795–27802

    Article  CAS  Google Scholar 

  34. Zhang B, Li A, Lin J, Liang W (2022) Exploring the photocatalytic properties and carrier dynamics of 2D Janus XMMX′ (X = S, Se; M = Ga, In; and X′ = Te) materials. Phys Chem Chem Phys 24:23437–23446

    Article  CAS  PubMed  Google Scholar 

  35. Bakharev PV, Huang M, Saxena M et al (2020) Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nat Nanotechnol 15:59–66

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502-1–395502-19

    Article  Google Scholar 

  37. Marini A, Hogan C, Grüning M, Varsano D (2009) yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180:1392–1403

    Article  CAS  ADS  Google Scholar 

  38. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562

    Article  CAS  ADS  Google Scholar 

  40. Xi J, Long M, Tang L et al (2012) First-principles prediction of charge mobility in carbon and organic nanomaterials. Nanoscale 4:4348–4369

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80

    Article  CAS  ADS  Google Scholar 

  42. Hedin L (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823

    Article  ADS  Google Scholar 

  43. Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390–5413

    Article  CAS  ADS  Google Scholar 

  44. Ismail-Beigi S (2006) Truncation of periodic image interactions for confined systems. Phys Rev B 73:233103-1–233103-4

    Article  ADS  Google Scholar 

  45. Salpeter EE, Bethe HA (1951) A relativistic equation for bound-state problems. Phys Rev 84:1232–1242

    Article  MathSciNet  ADS  Google Scholar 

  46. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659

    Article  CAS  ADS  Google Scholar 

  47. Ahuja R, Auluck S, Wills JM et al (1997) Optical properties of graphite from first-principles calculations. Phys Rev B 56:12652–12652

    Article  CAS  ADS  Google Scholar 

  48. Zhong Q, Dai Z, Liu J et al (2020) Phonon thermal transport in Janus single layer M2XY (M = Ga; X, Y = S, Se, Te): a study based on first-principles. Phys E Low-Dimens Syst Nanostruct 115:113683-1–113683-7

    Article  Google Scholar 

  49. Bikerouin M, Chdil O, Balli M (2023) Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures. Nanoscale 15:7126–7138

    Article  CAS  PubMed  Google Scholar 

  50. Shu H (2023) Two Janus Ga2STe monolayers: Electronic, optical, and photocatalytic properties. Phys Chem Chem Phys 25:7937–7945

    Article  CAS  PubMed  Google Scholar 

  51. Yang S, Chen Y, Jiang C (2021) Strain engineering of two-dimensional materials: methods, properties, and applications. InfoMat 3:397–420

    Article  Google Scholar 

  52. Pandey M, Pandey C, Ahuja R, Kumar R (2023) Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 109:108278-1–108278-37

    Article  Google Scholar 

  53. Lanzillo NA, Simbeck AJ, Nayak SK (2015) Strain engineering the work function in monolayer metal dichalcogenides. J Phys Condens Matter 27:175501-1–175501-6

    Article  ADS  Google Scholar 

  54. Yang S, Wang C, Sahin H et al (2015) Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett 15:1660–1666

    Article  CAS  PubMed  ADS  Google Scholar 

  55. Shu H, Guo J, Niu X (2019) Electronic, photocatalytic, and optical properties of two-dimensional boron pnictides. J Mater Sci 54:2278–2288

    Article  CAS  ADS  Google Scholar 

  56. Tian Y, Zheng Q, Zhao J (2020) Tensile strain-controlled photogenerated carrier dynamics at the van der Waals heterostructure interface. J Phys Chem Lett 11:586–590

    Article  CAS  PubMed  Google Scholar 

  57. Jiang J-W (2014) Phonon bandgap engineering of strained monolayer MoS2. Nanoscale 6:8326–8333

    Article  CAS  PubMed  ADS  Google Scholar 

  58. Zhang Z, Liu X, Yakobson BI, Guo W (2012) Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J Am Chem Soc 134:19326–19329

    Article  CAS  PubMed  Google Scholar 

  59. Mahata A, Garg P, Rawat KS et al (2017) A free-standing platinum monolayer as an efficient and selective catalyst for the oxygen reduction reaction. J Mater Chem A 5:5303–5313

    Article  CAS  Google Scholar 

  60. Deng S, Sumant AV, Berry V (2018) Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22:14–35

    Article  CAS  Google Scholar 

  61. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401-1–187401-4

    Article  ADS  Google Scholar 

  62. Shu H, Wang Y, Sun M (2019) Enhancing electronic and optical properties of monolayer MoSe2/blue phosphorene heterobilayer. Phys Chem Chem Phys 21:15760–15766

    Article  CAS  PubMed  Google Scholar 

  63. Ramasubramaniam A (2012) Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys Rev B 86:115409-1–115409-6

    Article  ADS  Google Scholar 

  64. Gomes LC, Trevisanutto PE, Carvalho A et al (2016) Strongly bound Mott-Wannier excitons in GeS and GeSe monolayers. Phys Rev B 94:155428-1–155428-5

    Article  ADS  Google Scholar 

  65. Mak KF, Lee C, Hone J et al (2010) Atomically Thin MoS2: A new direct-gap semiconductor. Phys Rev Lett 105:136805-1–136805-4

    Article  ADS  Google Scholar 

  66. Splendiani A, Sun L, Zhang Y et al (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Cai Y, Zhang G, Zhang Y-W (2014) Polarity-reversed robust carrier mobility in monolayer MoS2 nanoribbons. J Am Chem Soc 136:6269–6275

    Article  CAS  PubMed  Google Scholar 

  68. Qiao J, Kong X, Hu Z-X et al (2014) High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 5:4475-1–4475-7

    Article  ADS  Google Scholar 

  69. Karlický F, Turoň J (2018) Fluorographane C2FH: Stable and wide band gap insulator with huge excitonic effect. Carbon 135:134–144

    Article  Google Scholar 

  70. Liu X, Gao P, Hu W, Yang J (2020) Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells. J Phys Chem Lett 11:4070–4079

    Article  CAS  PubMed  Google Scholar 

  71. Zhao T, Chen J, Wang X, Yao M (2021) Ab-initio insights into electronic structures, optical and photocatalytic properties of Janus WXY (X/Y = O, S, Se and Te). Appl Surf Sci 545:148968-1–148968-9

    Article  Google Scholar 

  72. Peng R, Ma Y, Huang B, Dai Y (2019) Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A 7:603–610

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Jiangsu University of Science and Technology (No. 1052931610).

Author information

Authors and Affiliations

Authors

Contributions

Huabing Shu contributed to the data curation, supervision, funding acquisition, and writing—review and editing. Jiyuan Guo performed the part of theoretical calculations.

Corresponding author

Correspondence to Huabing Shu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Guo, J. Strain effects of stability, transport, and electro-optical properties of novel Ga2TeS monolayer. J Mater Sci 59, 2403–2415 (2024). https://doi.org/10.1007/s10853-024-09348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09348-3

Navigation