Skip to main content
Log in

Strain and electric field-modulated indirect-to-direct band transition of monolayer GaInS2

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The strain- and electric field-dependent electronic and optical properties of monolayer GaInShave been calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) GaInS2 monolayer shows an indirect band gap of 1.79 eV where valence band maxima (VBM) and conduction band maxima (CBM) rest between the K and Γ point and at the Γ point, respectively, while at 4% compressive strain, the material changes from indirect to direct band gap of 2.22 eV having the VBM and CBM at the Γ point. With a further increase in compressive strain, the CBM shifts, from the Γ to the M point, which leads to an indirect band gap again. The electric field also affects the band structure of monolayer GaInS2 and shifts the transition from direct to indirect band gap at a positive electric field of 4 V/nm, which acts normal to the surface. The strain-dependent optical properties are also calculated, which suggests that the absorption coefficient increases with compressive strain. Our work demonstrates a wide range of band gap variation and optical properties improvement upon application of biaxial strain and electric field on the monolayer of GaInS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References:

  1. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. in Nanoscience and technology: a collection of reviews from nature journals 11–19 (World Scientific, 2010).

  3. Yin, Z., et al.: Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012)

    Article  Google Scholar 

  4. Bera, J., Betal, A., Sahu, S.: Spin Orbit Coupling Induced Enhancement of Thermoelectric Performance of HfX2 (X= S, Se) and Its Janus Monolayer. J. Alloys Compd. 872, 159704 (2021)

    Article  Google Scholar 

  5. Pu, J., et al.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013–4017 (2012)

    Article  Google Scholar 

  6. Lee, H.S., et al.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)

    Article  Google Scholar 

  7. Choi, W., et al.: High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012)

    Article  Google Scholar 

  8. Mochalov, L., et al.: Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach. Superlattices Microstruct. 111, 1104–1112 (2017)

    Article  Google Scholar 

  9. Mochalov, L., et al.: Optical emission of two-dimensional arsenic sulfide prepared by plasma. Superlattices Microstruct. 114, 305–313 (2018)

    Article  Google Scholar 

  10. Li, X., et al.: Intrinsic electrical transport properties of monolayer silicene and MoS 2 from first principles. Phys. Rev. B 87, 115418 (2013)

    Article  Google Scholar 

  11. Tao, L., et al.: Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)

    Article  Google Scholar 

  12. Gao, Y.-P., et al.: Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm 19, 404–418 (2017)

    Article  Google Scholar 

  13. Meckbach, L., Stroucken, T., Koch, S.W.: Giant excitation induced bandgap renormalization in TMDC monolayers. Appl. Phys. Lett. 112, 61104 (2018)

    Article  Google Scholar 

  14. Almayyali, A.O.M., Muhsen, H.O., Merdan, M., Obeid, M.M., Jappor, H.R.: Two-dimensional ZnI2 monolayer as a photocatalyst for water splitting and improvement its electronic and optical properties by strains. Phys. E Low-dimensional Syst. Nanostruct. 126, 114487 (2021)

    Article  Google Scholar 

  15. Sinha, S., et al.: Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene. Nat. Commun. 11, 1–13 (2020)

    Google Scholar 

  16. Li, P., Appelbaum, I.: Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers. Phys. Rev. B 92, 195129 (2015)

    Article  Google Scholar 

  17. Sun, H., Wang, Z., Wang, Y.: Band alignment of two-dimensional metal monochalcogenides MXs (M= Ga, In; X= S, Se, Te). AIP Adv. 7, 95120 (2017)

    Article  Google Scholar 

  18. Abdulameer, M.J., Abed Al-Abbas, S.S., Jappor, H.R.: Tuning optical and electronic properties of 2D ZnI2/CdS heterostructure by biaxial strains for optical nanodevices: A first-principles study. J. Appl. Phys. 129, 225104 (2021)

    Article  Google Scholar 

  19. Almayyali, A.O.M., Kadhim, B.B., Jappor, H.R.: Stacking impact on the optical and electronic properties of two-dimensional MoSe2/PtS2 heterostructures formed by PtS2 and MoSe2 monolayers. Chem. Phys. 532, 110679 (2020)

    Article  Google Scholar 

  20. Fuhrer, M.S., Hone, J.: Measurement of mobility in dual-gated MoS 2 transistors. Nat. Nanotechnol. 8, 146 (2013)

    Article  Google Scholar 

  21. Radisavljevic, B., Kis, A.: Reply to ‘Measurement of mobility in dual-gated MoS 2 transistors.’ Nat. Nanotechnol. 8, 147–148 (2013)

    Article  Google Scholar 

  22. Radisavljevic, B., Kis, A.: Mobility engineering and a metal–insulator transition in monolayer MoS 2. Nat. Mater. 12, 815–820 (2013)

    Article  Google Scholar 

  23. Li, H., et al.: Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63–67 (2012)

    Article  Google Scholar 

  24. Perea-López, N., et al.: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511–5517 (2013)

    Article  Google Scholar 

  25. Feng, J., Qian, X., Huang, C.-W., Li, J.: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866 (2012)

    Article  Google Scholar 

  26. Peng, B., et al.: High thermoelectric efficiency in monolayer PbI2 from 300 K to 900 K. Inorg. Chem. Front. 6, 920–928 (2019)

    Article  Google Scholar 

  27. Betal, A., Bera, J., Sahu, S.: Low-temperature thermoelectric behavior and impressive optoelectronic properties of two-dimensional XI2 (X = Sn, Si): A first principle study. Comput. Mater. Sci. 186, 109977 (2021)

    Article  Google Scholar 

  28. Bera, J., Sahu, S.: Strain induced valley degeneracy: A route to the enhancement of thermoelectric properties of monolayer WS2. RSC Adv. 9, 25216–25224 (2019)

    Article  Google Scholar 

  29. Zolyomi, V., Drummond, N.D., FalKo, V.I.: Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides. Phys. Rev. B 87, 195403 (2013)

    Article  Google Scholar 

  30. Jin, H., et al.: Ohmic contact in monolayer InSe-metal interface. 2D Mater. 4, 25116 (2017)

    Article  Google Scholar 

  31. Late, D.J., et al.: GaS and GaSe ultrathin layer transistors. Adv. Mater. 24, 3549–3554 (2012)

    Article  Google Scholar 

  32. Vo, D.D., et al.: Janus monolayer PtSSe under external electric field and strain: a first principles study on electronic structure and optical properties. Superlattices Microstruct. 147, 106683 (2020)

    Article  Google Scholar 

  33. Bui, H.D., Jappor, H.R., Hieu, N.N.: Tunable optical and electronic properties of Janus monolayers Ga2SSe, Ga2STe, and Ga2SeTe as promising candidates for ultraviolet photodetectors applications. Superlattices Microstruct. 125, 1–7 (2019)

    Article  Google Scholar 

  34. Chen, T., Xu, L., Li, Q., Long, M.: Modulation of Electronic Behaviors of InSe Nanosheet and Nanoribbons: The First-Principles Study. Adv. Theory Simulations 2, 1900099 (2019)

    Article  Google Scholar 

  35. Xiao, X.-B., et al.: Electric Field Controlled Indirect-Direct-Indirect Band Gap Transition in Monolayer InSe. Nanoscale Res. Lett. 14, 322 (2019)

    Article  Google Scholar 

  36. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. b 59, 1758 (1999)

    Article  Google Scholar 

  37. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  38. Giannozzi, P., et al.: Quantum Espresso a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Mater. 21, 395502 (2009)

    Article  Google Scholar 

  39. Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  40. Boukamp, B.A.: A linear Kronig-Kramers transform test for immittance data validation. J. Electrochem. Soc. 142, C1885-1894 (1995)

    Article  Google Scholar 

  41. Wang, H., et al.: First-principles study of electronic, optical and thermal transport properties of group III–VI monolayer MX (M= Ga, In; X= S, Se). J. Appl. Phys. 125, 245104 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Human Resource and Development for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betal, A., Bera, J., Alam, M. et al. Strain and electric field-modulated indirect-to-direct band transition of monolayer GaInS2. J Comput Electron 21, 227–234 (2022). https://doi.org/10.1007/s10825-021-01833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01833-1

Keywords

Navigation