Skip to main content
Log in

Significant greenish–yellow emission from Dy3+/Sm3+ co-doped strontium–aluminate–telluro-borate glasses: role of Ag and CuO nanoparticles interplay

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various lanthanides-doped and plasmonic nanoparticles (Nps) included oxide glasses with tunable optical properties are advantageous for miniaturized solid-state lasers and white light-emitting displays making. Thus, the absorption and emission characteristics of a new type of Dy2O3/Sm2O3-doped strontium–aluminate–telluro-borate glasses (prepared using the melt-quenching approach and characterized comprehensively) were customized by inserting copper oxide nanoparticles (CuONps) and silver nanoparticles (AgNps). XRD analysis of the samples showed their amorphous nature. HRTEM images displayed the dispersion of CuO/AgNps in the disordered matrix. Intense yellow (4F9/2 → 6H11/2) and blue (4F9/2 → 6H13/2) luminescence from Dy3+ were observed at 386-nm excitation. The observed enhancement in the luminescence intensity was mainly due to the localized surface plasmon resonance (LSPR)-mediated strong local field effect and energy transfer processes, wherein the synergism of CuO/AgNps played a significant role. Judd–Ofelt model calculation revealed approximately 23-fold improvement in the spectroscopic quality factor. Additionally, the CIE coordinates were shifted from the yellowish–orange to greenish–yellow region. The proposed glasses may be useful for practical applications such as in multicolor lasing and optical amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data and code availability

The data sets generated during the current study are available from the corresponding author on reasonable personal request.

References

  1. Kuzminova A, Solař P, Kúš P, Kylián O (2019) Double plasmon resonance nanostructured silver coatings with tunable properties. J Nanomater. https://doi.org/10.1155/2019/1592621

    Article  Google Scholar 

  2. Bezerra SM, Levchenko V, Piccinelli F et al (2022) Amplification of light emission of lanthanide complexes by copper and copper oxide nanoparticles. J Lumin 251:119217. https://doi.org/10.1016/j.jlumin.2022.119217

    Article  CAS  Google Scholar 

  3. Singla S, Abhishek BN et al (2023) Analysis of gold nanoparticles dispersed bismuth borate glass: effect of size and concentration. J Mater Sci Mater Electron 34:526. https://doi.org/10.1007/s10854-023-09964-w

    Article  CAS  Google Scholar 

  4. Zhang J, Sun T, Zhang C et al (2020) Enhanced third-order optical nonlinearity and photon luminescence of Sn2+ in gold nanoparticles embedded chalcogenide glasses. J Mater Sci 55:15882–15893. https://doi.org/10.1007/s10853-020-05124-1

    Article  CAS  Google Scholar 

  5. Abdullahi I, Hashim S, Ghoshal SK, Sa’ad L (2020) Modified structure and spectroscopic characteristics of Sm3+/Dy3+ co-activated barium-sulfur-telluro-borate glass host: role of plasmonic gold nanoparticles inclusion. Opt Laser Technol 132:106486

    Article  CAS  Google Scholar 

  6. Som T, Karmakar B (2011) Synthesis and enhanced photoluminescence in novel AucoreAu-Agshell nanoparticles embedded Nd3+-doped antimony oxide glass hybrid nanocomposites. J Quant Spectrosc Radiat Transf 112:2469–2479. https://doi.org/10.1016/j.jqsrt.2011.06.015

    Article  CAS  Google Scholar 

  7. Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501. https://doi.org/10.1021/nl062901x

    Article  CAS  Google Scholar 

  8. Keshavamurthy K, Gurushantha K, Sayyed MI et al (2022) Silver nanoparticles improved infrared photoluminescence of Nd3+ doped sodium borate glasses. Infrared Phys Technol 127:104451. https://doi.org/10.1016/j.infrared.2022.104451

    Article  CAS  Google Scholar 

  9. Shivani S, Sandeep K, Nancy M et al (2022) Enhanced photoluminescence in Dy3+/Au co-doped bismuth borosilicate glass. Opt Mater (Amst) 126:112236. https://doi.org/10.1016/j.optmat.2022.112236

    Article  CAS  Google Scholar 

  10. Keshavamurthy K, Jagannath G, Abdullah D, Aljawhara A (2023) Silver nanoparticles amplified visible and infrared photoluminescence features of Er3+ ions activated in borate glasses. Plasmonics 18(1):175–182. https://doi.org/10.1007/s11468-022-01736-2

    Article  CAS  Google Scholar 

  11. Wei Y, Ebendorff-heidepriem H, Zhao JT (2019) Recent advances in hybrid optical materials : integrating nanoparticles within a glass matrix. Adv Opt Mater 1900702:1–34. https://doi.org/10.1002/adom.201900702

    Article  CAS  Google Scholar 

  12. Huang K, Idris NM, Zhang Y (2016) Engineering of lanthanide-doped upconversion nanoparticles for optical encoding. Small 12:836–852. https://doi.org/10.1002/smll.201502722

    Article  CAS  Google Scholar 

  13. Jiménez JA, Hockenbury JB (2013) Spectroscopic properties of CuO, SnO, and Dy2O3 co-doped phosphate glass: from luminescent material to plasmonic nanocomposite. J Mater Sci 48:6921–6928. https://doi.org/10.1007/s10853-013-7497-0

    Article  CAS  Google Scholar 

  14. Naseer J, Namachivayam R, Manikandan D et al (2021) Effect of annealing on metal nanoclusters tuned luminescence shift in Ag and Cu embedded nanocomposite glasses. J Non Cryst Solids 559:120671. https://doi.org/10.1016/j.jnoncrysol.2021.120671

    Article  CAS  Google Scholar 

  15. Ahmadi F, Ebrahimpour Z, Asgari A, El-Mallawany R (2020) Role of silver/titania nanoparticles on optical features of Sm3+ doped sulfophosphate glass. Opt Mater (Amst) 105:109922. https://doi.org/10.1016/j.optmat.2020.109922

    Article  CAS  Google Scholar 

  16. Zhang Y, Jin Y, He M et al (2018) Optical properties of bimetallic Au–Cu nanocrystals embedded in glass. Mater Res Bull 98:94–102. https://doi.org/10.1016/j.materresbull.2017.10.009

    Article  CAS  Google Scholar 

  17. Kindrat II, Padlyak BV, Lisiecki R, Adamiv VT (2021) Spectroscopic and luminescent properties of the lithium tetraborate glass co-doped with Nd and Ag. J Alloys Compd 853:157321. https://doi.org/10.1016/j.jallcom.2020.157321

    Article  CAS  Google Scholar 

  18. Kabir MH, Ibrahim H, Ayon SA et al (2022) Structural, nonlinear optical and antimicrobial properties of sol-gel derived Fe-doped CuO thin films. Heliyon 8:e10609. https://doi.org/10.1016/j.heliyon.2022.e10609

    Article  CAS  Google Scholar 

  19. Srinivas B, Bhogi A, Naresh P et al (2022) Effect of SrO and TeO2 on the physical and spectral properties of strontium tellurite boro-titanate glasses doped with Cu2+ ions. J Non Cryst Solids 575:121218. https://doi.org/10.1016/J.JNONCRYSOL.2021.121218

    Article  CAS  Google Scholar 

  20. Tsaturyan AA, Cherkasova SO, Budnyk AP (2020) Theoretical and experimental characterization of Cu-doped amorphous silicate glass. J Mol Struct 1205:127629. https://doi.org/10.1016/j.molstruc.2019.127629

    Article  CAS  Google Scholar 

  21. Abdelkarem K, Saad R, Ahmed AM et al (2023) Efficient room temperature carbon dioxide gas sensor based on barium doped CuO thin films. J Mater Sci 58:11568–11584. https://doi.org/10.1007/s10853-023-08687-x

    Article  CAS  Google Scholar 

  22. Arya S, Prerna SA, Kour R (2019) Comparative study of CuO, CuO@Ag and CuO@Ag: La nanoparticles for their photosensing properties. Mater Res Express 6(11):116313. https://doi.org/10.1088/2053-1591/ab49ab

    Article  Google Scholar 

  23. Yu X, Xuan Y (2018) Investigation on thermo-optical properties of CuO/Ag plasmonic nanofluids. Sol Energy 160:200–207. https://doi.org/10.1016/j.solener.2017.12.007

    Article  CAS  Google Scholar 

  24. Abdullahi I, Hashim S, Ghoshal SK, Ahmad AU (2020) Structures and spectroscopic characteristics of barium–sulfur–telluro–borate glasses: role of Sm3+ and Dy3+ Co-activation. Mater Chem Phys 247:122862

    Article  CAS  Google Scholar 

  25. Dahiya J, Hooda A, Agarwal A, Khasa S (2022) Tuneable colour flexibility in Dy3+&Eu3+ co-doped lithium fluoride bismuth borate glass system for solid state lighting applications. J Non Cryst Solids 576:121237. https://doi.org/10.1016/j.jnoncrysol.2021.121237

    Article  CAS  Google Scholar 

  26. do Labaki HP, Caixeta FJ, Gonçalves RR (2022) Wide multicolor tunability of blue-to-green up-conversion emission and white light generation in Pr3+/Yb3+ co-doped yttrium tantalates. J Lumin 245:118761. https://doi.org/10.1016/j.jlumin.2022.118761

    Article  CAS  Google Scholar 

  27. Tafida RA, Thakur S, Onimisi MY et al (2023) Samarium nanoparticle-doped silver oxide-incorporated zinc tellurite glass system: structural, elastic, and Judd-Offelt intensity parameters. Mater Chem Phys 296:127319. https://doi.org/10.1016/j.matchemphys.2023.127319

    Article  CAS  Google Scholar 

  28. Hari Babu B, Ravi Kanth Kumar VV (2014) Photoluminescence and color tunability of γ-irradiated Tb3+-Sm3+-codoped oxyfluoride aluminoborate glasses. J Mater Sci 49:415–423. https://doi.org/10.1007/s10853-013-7720-z

    Article  CAS  Google Scholar 

  29. Adamu SB, Halimah MK, Chan KT et al (2022) Eu3+ ions doped zinc borotellurite glass system for white light laser application: Structural, physical, optical properties, and Judd–Ofelt theory. J Lumin 250:119099. https://doi.org/10.1016/j.jlumin.2022.119099

    Article  CAS  Google Scholar 

  30. El Damrawi G, Mohammed Ramadan R, El Baiomy M (2022) Structural role of strontium oxide in modified silicate glasses. SILICON 14:4879–4885. https://doi.org/10.1007/s12633-021-01226-w/Published

    Article  CAS  Google Scholar 

  31. Shchegoleva NE, Orlova LA, Chainikova AS, Grashchenkov DV (2021) Effect of the additives B2O3 and P2O5 on silicate and glass-formation processes in making strontium aluminosilicate glasses. Glas Ceram (English Transl Steklo i Keramika) 78:97–103. https://doi.org/10.1007/s10717-021-00355-3

    Article  CAS  Google Scholar 

  32. Yamusa YA, Hussin R, Shamsuri WNW (2018) Physical, optical and radiative properties of CaSO4–B2O3–P2O5 glasses doped with Sm3+ ions. Chinese J Phys 56:932–943. https://doi.org/10.1016/j.cjph.2018.03.025

    Article  CAS  Google Scholar 

  33. Ashok A, Vamsipriya V, Upender G, Prasad M (2020) Optical and Structural Studies of B2O3–ZnO–Na2O–Li2O Glasses Containing Ag Nano Particles. Glas Phys Chem 46:378–388. https://doi.org/10.1134/S1087659620050028

    Article  CAS  Google Scholar 

  34. Ennouri M, Petit L, Elhouichet H (2022) Investigations of the thermal, structural, and Near-IR emission properties of Ag containing fluorophosphate glasses and their crystallization process. Opt Mater (Amst) 131:112610. https://doi.org/10.1016/j.optmat.2022.112610

    Article  CAS  Google Scholar 

  35. Abdel-Gayed MS, Elbashar YH, Barakat MH, Shehata MR (2017) Optical spectroscopic investigations on silver doped sodium phosphate glass. Opt Quantum Electron 49:305. https://doi.org/10.1007/s11082-017-1132-2

    Article  CAS  Google Scholar 

  36. Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD (1990) Infrared reflectance spectra of lithium borate glasses. J Non Cryst Solids 126:52–67. https://doi.org/10.1016/0022-3093(90)91023-K

    Article  CAS  Google Scholar 

  37. Kolavekar SB, Ayachit NH (2021) Impact of Pr2O3 on the physical and optical properties of multi-component borate glasses. Mater Chem Phys 257:123796. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123796

    Article  CAS  Google Scholar 

  38. Oueslati-Omrani R, Hamzaoui AH (2020) Effect of ZnO incorporation on the structural, thermal and optical properties of phosphate based silicate glasses. Mater Chem Phys 242:122461. https://doi.org/10.1016/J.MATCHEMPHYS.2019.122461

    Article  CAS  Google Scholar 

  39. Shoaib M, Rooh G, Rajaramakrishna R et al (2019) Physical and luminescence properties of samarium doped oxide and oxyfluoride phosphate glasses. Mater Chem Phys 229:514–522. https://doi.org/10.1016/j.matchemphys.2019.03.016

    Article  CAS  Google Scholar 

  40. Zaini NA, Mohamed SN, Mohamed Z (2021) Effects of vanadium on the structural and optical properties of borate glasses containing Er3+ and silver nanoparticles. Materials (Basel) 14(13):3710

    Article  CAS  Google Scholar 

  41. Xu X, Xie L, Ying Y (2019) Factors in fluencing near infrared spectroscopy analysis of agro-products: a review. Front Agric Sci Eng 6:105–115

    Article  Google Scholar 

  42. Maeda H, Ozaki Y, Tanaka M et al (1995) Near Infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water: relationship between spectral changes and hydrogen bonds. J Near Infrared Spectrosc 3:191–201

    Article  CAS  Google Scholar 

  43. Ahmed MR, Ashok B, Ahmmad SK et al (2019) Infrared and Raman spectroscopic studies of Mn2+ ions doped in strontium alumino borate glasses: describes the role of Al2O3. Spectrochim Acta Part A Mol Biomol Spectrosc 210:308–314. https://doi.org/10.1016/J.SAA.2018.11.053

    Article  CAS  Google Scholar 

  44. Ravi O, Reddy CM, Manoj L, Prasad BD (2012) Structural and optical studies of Sm3+ ions doped niobium borotellurite glasses. J Mol Struct 1029:53–59. https://doi.org/10.1016/j.molstruc.2012.06.059

    Article  CAS  Google Scholar 

  45. Abou Hussein EM, Barakat MAY (2022) Structural, physical and ultrasonic studies on bismuth borate glasses modified with Fe2O3 as promising radiation shielding materials. Mater Chem Phys 290:126606. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126606

    Article  CAS  Google Scholar 

  46. Monisha M, Murari MS, Sayyed MI et al (2021) Thermal, structural and optical behaviour of Eu3+ ions in Zinc Alumino Boro-Silicate glasses for bright red emissions. Mater Chem Phys 270:124787. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124787

    Article  CAS  Google Scholar 

  47. Moustafa MG, Shreif A, Ghalab S (2020) Towards superior optical and dielectric properties of borosilicate glasses containing tungsten and vanadium ions. Mater Chem Phys 254:123464. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123464

    Article  CAS  Google Scholar 

  48. Coşgun Ergene A, Khabbaz Abkenar S, Deniz E, Ow-Yang CW (2022) Borate polyanions tuning persistent luminescence in Eu and Dy co-doped strontium aluminate. Mater Adv 3:3238–3250. https://doi.org/10.1039/D1MA01234G

    Article  Google Scholar 

  49. Narsimha B, Chandra Sekhar K, Shareefuddin M, Gokarakonda R (2023) Copper doped strontium Indium-borate glasses: FTIR, Raman, EPR, optical and structural studies. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.185

    Article  Google Scholar 

  50. Nath J, Mukhopadhyay S, Ranjan K (2022) Enhancement of optical properties and dielectric nature of Sm3+ doped Na2O–ZnO–TeO2 Glass materials. J Phys Chem Solids 167:110776. https://doi.org/10.1016/j.jpcs.2022.110776

    Article  CAS  Google Scholar 

  51. Swetha BN, Keshavamurthy K, Jagannath G (2021) Influence of size of Ag NP on spectroscopic performances of Eu3+ ions in sodium borate glass host. Optik (Stuttg) 240:166918. https://doi.org/10.1016/j.ijleo.2021.166918

    Article  CAS  Google Scholar 

  52. Danmallam IM, Ghoshal SK, Ariffin R, Bulus I (2020) Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd–Ofelt calculation. Opt Mater (Amst) 105:109889. https://doi.org/10.1016/j.optmat.2020.109889

    Article  CAS  Google Scholar 

  53. Ma M, Liu Z, Zhang F et al (2016) Suppression of silver diffusion in borosilicate glass-based low-temperature cofired ceramics by copper oxide addition. J Am Ceram Soc 99:2402–2407. https://doi.org/10.1111/jace.14248

    Article  CAS  Google Scholar 

  54. Wang W, Huang L, Zhang Q et al (2022) Ultrafast third-order nonlinear optical response of Ag modified ZnSe/ZnS core-shell structure quantum dots composite films. Optik (Stuttg) 252:168537. https://doi.org/10.1016/j.ijleo.2021.168537

    Article  CAS  Google Scholar 

  55. Zhang Z (2020) Research progress of gold core-shell structured nanoparticles in tumor therapy. J Phys Conf Ser 1699(1):012007. https://doi.org/10.1088/1742-6596/1699/1/012007

    Article  CAS  Google Scholar 

  56. Ma Y, Chen Z, Chu Y et al (2018) Regulation of gold nanoparticles for the rare earth luminescence enhancement based on nanoporous silica glass. J Lumin 204:104–109. https://doi.org/10.1016/j.jlumin.2018.07.041

    Article  CAS  Google Scholar 

  57. Zheng C, Sun Z, Li W et al (2021) Fabrication and spectral properties of Dy: SrF2 transparent ceramics. Mater Chem Phys 273:125141. https://doi.org/10.1016/J.MATCHEMPHYS.2021.125141

    Article  CAS  Google Scholar 

  58. Pawar PP, Munishwar SR, Gedam RS (2017) Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED : a correlation between physical, thermal, structural and optical properties. Solid State Sci 64:41–50. https://doi.org/10.1016/j.solidstatesciences.2016.12.009

    Article  CAS  Google Scholar 

  59. Le QH, Friebe C, Wang WC, Wondraczek L (2019) Spectroscopic properties of Cu2+ in alkaline earth metaphosphate, fluoride-phosphate and fluoride-phosphate-sulfate glasses. J Non-Cryst Solids X 4:100037. https://doi.org/10.1016/j.nocx.2019.100037

    Article  CAS  Google Scholar 

  60. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  61. Amendola V, Pilot R, Frasconi M (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29:203002

    Article  Google Scholar 

  62. Ritthichai T, Pimpan V (2019) Ammonia sensing of silver nanoparticles synthesized using tannic acid combined with UV radiation: effect of UV exposure time. J King Saud Univ Sci 31:277–284. https://doi.org/10.1016/j.jksus.2017.10.003

    Article  Google Scholar 

  63. Hashim S, Ghoshal SK, Abdullahi I (2020) On the lasing potency of samarium-activated BaSO4–TeO2–B2O3 glass host : Judd–Ofelt analysis. Indian J Phys 94:1811–1820. https://doi.org/10.1007/s12648-019-01631-3

    Article  CAS  Google Scholar 

  64. Marcondes LM, Ramos da Cunha C, de Pietro GM et al (2021) Multicolor tunable and NIR broadband emission from rare-earth-codoped tantalum germanate glasses and nanostructured glass-ceramics. J Lumin 239:118357. https://doi.org/10.1016/j.jlumin.2021.118357

    Article  CAS  Google Scholar 

  65. Rekha Rani P, Venkateswarlu M, Mahamuda S et al (2019) Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J Alloys Compd 787:503–518. https://doi.org/10.1016/j.jallcom.2019.02.088

    Article  CAS  Google Scholar 

  66. Wang N, Cao R, Cai M et al (2017) Ho3+/Tm3+ codoped lead silicate glass for 2m laser materials. Opt Laser Technol 97:364–369

    Article  CAS  Google Scholar 

  67. Li C, Zhu L, Zhao D, Zhou Y (2022) Luminescence property in Er3+/Tm3+/Ag NPs doped tellurite glass applied for broadband amplifier. Infrared Phys Technol 127:104381. https://doi.org/10.1016/j.infrared.2022.104381

    Article  CAS  Google Scholar 

  68. Swetha BN, Devarajulu G, Keshavamurthy K et al (2021) Enhanced 1.53 µm emission of Er3+ in nano-Ag embedded sodium-boro-lanthanate glasses. J Alloys Compd 856:158212. https://doi.org/10.1016/j.jallcom.2020.158212

    Article  CAS  Google Scholar 

  69. Hegde V, Viswanath CSD, Mahato KK, Kamath SD (2019) Warm white light and colour tunable characteristics of Dy3+ co-doped with Eu3+ and Pr3+ zinc sodium bismuth borate glasses for solid state lighting applications. Mater Chem Phys 234:369–377. https://doi.org/10.1016/j.matchemphys.2019.05.063

    Article  CAS  Google Scholar 

  70. Shoaib M, Rooh G, Rajaramakrishna R et al (2019) Comparative study of Sm3+ ions doped phosphate based oxide and oxy-fluoride glasses for solid state lighting applications. J Rare Earths 37:374–382. https://doi.org/10.1016/j.jre.2018.09.008

    Article  CAS  Google Scholar 

  71. Kuhn S, Herrmann A, Hein J et al (2013) Sm3+-doped La2O3–Al2O3–SiO2–glasses: structure, fluorescence and thermal expansion. J Mater Sci 48:8014–8022. https://doi.org/10.1007/s10853-013-7613-1

    Article  CAS  Google Scholar 

  72. Ajith A, Swapna MNS, Cabrera H, Sankararaman SI (2023) Comprehensive analysis of copper plasma: a laser-induced breakdown spectroscopic approach. Photonics 10:199. https://doi.org/10.3390/photonics10020199

    Article  CAS  Google Scholar 

  73. Ennouri M, Gelloz B, Elhouichet H (2021) Impact of Ag species on luminescence and spectroscopic properties of Eu3+ doped fluoro-phosphate glasses. J Non Cryst Solids 570:120938. https://doi.org/10.1016/j.jnoncrysol.2021.120938

    Article  CAS  Google Scholar 

  74. Abdullahi I, Hashim S, Ghoshal SK et al (2023) Enhanced up- and down-conversion luminescence from Dy3+–Sm3+ co-doped B2O3–SrCO3–TeO2–Al2O3–MgO glass hosts: effects of CuO nanoparticles embedment. Phys Scr 98:065511. https://doi.org/10.1088/1402-4896/acd152

    Article  Google Scholar 

  75. Vallejo MA, Perez M, Ceron PV et al (2017) Photoluminescence and thermoluminescence of phosphate glasses doped with Dy3+ and containing silver nanoparticles. NANO 12:1750145. https://doi.org/10.1142/S1793292017501454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledged the post-doctoral fellowship assistance from Universiti Teknologi Malaysia (UTM) under the Professional Development Research University (R.J130000.7113.06E41) initiatives. M. I. Sayyed and S. Hashim gratefully acknowledge Universiti Teknologi Malaysia for supporting their Prominent Visiting Researcher Scheme (RJ3000.7113.3F000) through the Department of Deputy Vice-Chancellor (Research and Innovation).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written through the contributions of all authors who agreed with this submission. IA prepared and characterized the samples. SH provided the materials and funding. SKG and MIS analyzed the results and revised the manuscript. IA and HHT wrote the manuscript draft. All authors participated in the study conception and design.

Corresponding author

Correspondence to Ibrahim Abdullahi.

Ethics declarations

Conflict of interest

The authors declare no competing financial or ethical interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullahi, I., Hashim, S., Ghoshal, S.K. et al. Significant greenish–yellow emission from Dy3+/Sm3+ co-doped strontium–aluminate–telluro-borate glasses: role of Ag and CuO nanoparticles interplay. J Mater Sci 59, 1196–1214 (2024). https://doi.org/10.1007/s10853-023-09276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09276-8

Navigation