Skip to main content
Log in

On the lasing potency of samarium-activated BaSO4–TeO2–B2O3 glass host: Judd–Ofelt analysis

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The quest for optimized rare earth glass host is ever-increasing. Multi-component telluro-borate glass matrices are excellent rare earth host due to their unique spectroscopic traits. Inspired by this idea, a series of (70-y)B2O3–15BaSO4–15TeO2ySm2O3 glasses were fabricated using melt-quenching method. The measured spectroscopic features were complemented by Judd–Ofelt (JO) analysis. The absorption spectra of as-quenched samples revealed nine bands in the ultraviolet–near-infrared regions. The photoluminescence (PL) emission spectra displayed four emission channels: moderate green, orange, moderate red, and a weak red emission of Sm3+ transitions. The observed quenching in the PL intensity of the glasses prepared with y > 1.0 mol% was attributed to the binary cross-relaxation mechanisms. The calculated JO intensity parameters Ω2, Ω4, and Ω6 were ranged from 1.48 to 4.20 (× 10−20 cm2), 2.31–4.31 (× 10−20 cm2) and 1.15–1.99 (× 10−20 cm2), respectively. Moreover, the small values of Ω2 disclosed the weak covalent nature of network co-ordination in the neighborhood of Sm3+ sites. The 4G5/2 to 6H7/2 transition of Sm3+ disclosed the highest branching ratio (68.8%), emission cross section (75.90 × 10−23 cm2), gain bandwidth (167.69 × 10−29 cm3), and optical gain (172.01 × 10−26 cm2 s−1) for BSTBSm0.5 glass. Briefly, the proposed glass composition may be a potential host for visible waveguide laser application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y A Tanko, S K Ghoshal and M R Sahar J. Mol. Struct. 1117 64 (2016)

    Article  ADS  Google Scholar 

  2. G A Kumar, C W Chen, J Ballato, R E Riman, S Carolina, R V July, V Re, M Recei and V December Chem. Mater. 19 1523 (2007)

    Article  Google Scholar 

  3. B C Joshi, B Khulbey, D Upreti and C C Dhaundiyal Indian J. Phys. 84 405 (2010)

    Article  ADS  Google Scholar 

  4. O Paper, P S R Naik, M K Kumar and A S Kumar Indian J. Phys. 87 757 (2013)

    Article  ADS  Google Scholar 

  5. O Paper, S V G V A Prasad and Y N C R Babu Indian J. Phys. 88 427 (2014)

    Article  ADS  Google Scholar 

  6. B M Walsh JuddOfelt theory: principles and practices (eds) B Di Bartolo and O Forte, (Netherlands: Springer) p 403 (2006)

  7. J H S K Monteiro, I O Mazali and F A Sigoli J. Fluoresc. 21 2237 (2011)

    Article  Google Scholar 

  8. H A Othman and G M Arzumanyan Opt. Mater. (Amst). 62 689 (2016)

    Article  ADS  Google Scholar 

  9. J C G Bunzli and G R (chemistry department F state U Choppin (eds) Lanthanide Probes in Life, Chemical a Earth Sciences: Theory and Practice 1st ed., (New York: Elsevier) p 219 (1989)

  10. S Jain and R Singh J. Chem. Pharm. Res 3 1 (2011)

    Google Scholar 

  11. N Deopa and A S Rao Opt. Mater. (Amst). 72 e105 (2017)

    Article  Google Scholar 

  12. P Su, C Ma, M G Brik and A M Srivastava Opt. Mater. (Amst). 79 129 (2018)

  13. B Bondzior, N Miniajluk and J Dere Opt. Mater. (Amst). 79 269 (2018)

  14. Y A Yamusa, R Hussin and W N W Shamsuri Chinese J. Phys. 56 932 (2018)

    Article  ADS  Google Scholar 

  15. C Pereira, J Barbosa, F C Cassanjes, R R Gonçalves, S J L Ribeiro and G Poirier Opt. Mater. (Amst). 62 95 (2016)

  16. F Nawaz, M R Sahar, S K Ghoshal, A Awang and R J Amjad J. Lumin. 2014 90 (2014)

    Article  Google Scholar 

  17. S Dhankhar, R S Kundu, M Dult, S Murugavel, R Punia and N Kishore Indian J. Phys. 90 1033 (2016)

    Article  ADS  Google Scholar 

  18. O Paper, D Souri, Z E Tahan and S A Salehizadeh Indian J. Phys. 90 407 (2015)

    Google Scholar 

  19. Y A Yamusa, R Hussin and W N W Shamsuri Indian J. Phys. 93 15 (2019)

    Article  ADS  Google Scholar 

  20. M V S Kumar, S Babu, B R Reddy and Y C Ratnakaram Indian J. Phys. 91 677 (2017)

    Article  ADS  Google Scholar 

  21. I Abdullahi, S Hashim and S K Ghoshal J. Lumin. 216 1 (2019)

    Article  Google Scholar 

  22. V H Rao, P S Prasad, M M Babu, P V Rao, L F Santos, G N Raju and N Veeraiah Ceram. Int. 43 16467 (2017)

    Article  Google Scholar 

  23. W T Carnall, P R Fields and K Rajnak J. Chem. Phys. 49 4412 (1968)

    Article  ADS  Google Scholar 

  24. S Sailaja, C Nageswara Raju, C Adinarayana Reddy, B Deva Prasad Raju, Y D Jho and B Sudhakar Reddy J. Mol. Struct. 1038 29 (2013)

    Article  ADS  Google Scholar 

  25. Z G Mazurak and M Czaja Opt. Mater. (Amst). 33 506 (2011)

    Article  ADS  Google Scholar 

  26. M Hatanaka and S Yabushita J. Phys. Chem. 113 12615 (2009)

    Article  Google Scholar 

  27. P Taylor, C K Jørgensen and B R Judd Mol. Phys. An Int. J. Interface Between Chem. Phys. 8 281 (1964)

  28. T Fujii, T Nagai, A Uehara and H Yamana J. Alloys Compd. 441 10 (2007)

    Article  Google Scholar 

  29. A Agarwal, I Pal, S Sanghi and M P Aggarwal Opt. Mater. (Amst). 32 339 (2009)

  30. F Ahmadi, R Hussin and S K Ghoshal J. Alloys Compd. May, 2017 94 (2017)

  31. V R Prasad, S Babu and Y C Ratnakaram Indian J. Phys. 90 1173 (2016)

    Article  ADS  Google Scholar 

  32. N N Yusof, S K Ghoshal and M N Azlan J. Alloys Compd. 2017 1083 (2017)

    Article  Google Scholar 

  33. S Rani, N Ahlawat, R Parmar, S Dhankhar and R S Kundu Indian J. Phys. 92 901 (2018)

    Article  ADS  Google Scholar 

  34. H A Othman, H S Elkholy and I Z Hager Int. J. Appl. Glas. Sci. 1 (2016)

  35. P R F and K R W T Carnall J. Chem. Phys. 49 4424 (1968)

  36. E S Sazali, M R Sahar and M S Rohani Mater. Today Proc. 2 5241 (2015)

    Article  Google Scholar 

  37. B R Judd Phys. Rev. (1962)

  38. V R Prasad, S Damodaraiah, M Seshadri, S Babu and Y C Ratnakaram Indian J. Phys. 91 1265 (2017)

    Article  ADS  Google Scholar 

  39. M A K Elfayoumi, M Farouk, M G Brik and M M Elokr J. Alloys Compd. 492 712 (2010)

    Article  Google Scholar 

  40. W.T. Carnall, J P Hessler and J F. Wagner J. Phys. Chem. 82 2152 (1978)

    Article  Google Scholar 

  41. M Mariyappan, S Arunkumar and K Marimuthu J. Mol. Struct. 1105 214 (2015)

    Article  ADS  Google Scholar 

  42. M P Hehlen, M G Brik and K W Kr J. Lumin. 136 221 (2013)

    Article  Google Scholar 

  43. I I Kindrat, B V Padlyak and R Lisiecki Opt. Mater. (Amst). 49 241 (2015)

  44. S Q Mawlud, M M Ameen, M R Sahar, Z A S Mahraz and K F Ahmed Opt. Mater. (Amst). 69 318 (2017)

  45. R Lachheb, A Herrmann, A A Assadi, J Reiter, J Körner, J Hein, C Rüssel, R Maâlej and K Damak J. Lumin. 201 245 (2018)

    Article  Google Scholar 

  46. D A Turchetti, R A Domingues, J N Freitas, D Azevedo, L G T A Duarte and J C Germino J. Lumin. 201 290 (2018)

    Article  Google Scholar 

  47. G Vimal, K P Mani, D Alexander, P R Biju, N V Unnikrishnan, M A Ittyachen and C Joseph Opt. Mater. (Amst). 50 220 (2015)

  48. O O Tio, N Gupta, A Kaur, A Khanna, F Gonzàlez, C Pesquera, R Iordanova and B Chen J. Non. Cryst. Solids 470 168 (2017)

    Article  ADS  Google Scholar 

  49. C Ybi, Y Wu, B C Chakoumakos, H Shi, M Du, I Greeley, M Loyd, D J Rutstrom, L Stand, M Koschan and C L Melcher J. Lumin. 201 460 (2018)

    Article  Google Scholar 

  50. Q Wu, Y Li, C Wang and J Luo J. Lumin. 201 485 (2018)

    Article  Google Scholar 

  51. I V Kityk Opt. Mater. (Amst). 72 380 (2017)

  52. F Nawaz, M R Sahar, S K Ghoshal, R J Amjad, M R Dousti and A Awang Chin. Opt. Lett. 11 61605 (2013)

    Article  Google Scholar 

  53. S Balaji, P A Azeem and R R Reddy Phys. B 394 62 (2007)

  54. K Swapna, S Mahamuda, A Srinivasa Rao, S Shakya, T Sasikala, D Haranath and G Vijaya Prakash Spectrochim. ActaPart A Mol. Biomol. Spectrosc. 125 53 (2014)

  55. L Boehm, R Reisfeld and N Spector J. Solid State Chem. 28 0 (1979)

  56. Y Wang, J Xie, Y Cheng, Z Zhao, X Zhao and G Chen J. Lumin. 205 136 (2019)

    Article  Google Scholar 

  57. P Manasa and C K Jayasankar Opt. Mater. (Amst). 62 139 (2016)

    Article  ADS  Google Scholar 

  58. S Shakya, A M Babu and G V Prakash J. Lumin. 163 64 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from UTM and Ministry of Malaysian Higher Education (MoHE) through FRGS/KPT Grant Vot. 5F050 is gratefully acknowledged. Similarly, the financial support by the Ministry of Education Malaysia and Universiti Teknologi Malaysia through UTMSHINE Signature Grant (No. 07G82 and 07G90) was gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Ghoshal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashim, S., Ghoshal, S.K. & Abdullahi, I. On the lasing potency of samarium-activated BaSO4–TeO2–B2O3 glass host: Judd–Ofelt analysis. Indian J Phys 94, 1811–1820 (2020). https://doi.org/10.1007/s12648-019-01631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01631-3

Keywords

PACS Nos.

Navigation