Skip to main content
Log in

Two-dimensional TMDs/MN (M = Al, Ga) van der Waals heterojunction photocatalyst: a first-principles study

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Finding efficient and environmentally friendly semiconductor photocatalysts can effectively alleviate the energy crisis and environmental pollution. Based on first-principles calculations, this work focused on the electronic, Bader charge and optical properties of the TMDs/MN heterojunctions. The results showed that the AlN/WS2 and GaN/WS2 heterojunctions are the type-II energy band arrangement, which indicates effective promotion of the separation of the photogenerated electron–hole pairs. Meanwhile, the AlN/WSe2, GaN/WSe2, AlN/MoSe2 and GaN/MoSe2 heterojunctions belonged to the type-I energy band arrangement. The Bader charge results showed that the built-in electric field formed by the heterojunction prevents the recombination of charge carriers. These type-I heterojunctions have excellent optical absorption ability and are suitable for optoelectronic components. Surprisingly, we found that the AlN/WSe2, GaN/WSe2, AlN/MoSe2 and GaN/MoSe2 heterojunctions transform type-I heterojunction to type-II heterojunction by applying electric field. This work further provides the theoretical basis for the design of efficient photocatalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

All data in this article are available for readers.

References

  1. Zhu Q, Xu Z, Qiu B, Xing M, Zhang J (2021) Emerging cocatalysts on g-C3N4 for photocatalytic hydrogen evolution. Small 17:2101070

    Article  CAS  Google Scholar 

  2. Kosco J, Bidwell M, Cha H, Martin T, Howells CT, Sachs M, Anjum DH, Gonzalez Lopez S, Zou L, Wadsworth A (2020) Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat Mater 19:559–565

    Article  CAS  Google Scholar 

  3. Sheng JL, Dong H, Meng XB, Tang HL, Yao YH, Liu DQ, Bai LL, Zhang FM, Wei JZ, Sun XJ (2019) Effect of different functional groups on photocatalytic hydrogen evolution in covalent-organic frameworks. ChemCatChem 11:2313–2319

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang DE, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  5. Mahmood J, Jung S-M, Kim S-J, Park J, Yoo J-W, Baek J-B (2015) Cobalt oxide encapsulated in C2N–h2D network polymer as a catalyst for hydrogen evolution. Chem Mater 27:4860–4864

    Article  CAS  Google Scholar 

  6. Mahmood J, Lee EK, Jung M, Shin D, Choi H-J, Seo J-M, Jung S-M, Kim D, Li F, Lah MS (2016) Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proc Natl Acad Sci 113:7414–7419

    Article  CAS  Google Scholar 

  7. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329

    Article  CAS  Google Scholar 

  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  9. Wang L, Yue Q, Pei C, Fan H, Dai J, Huang X, Li H, Huang W (2020) Scrolling bilayer WS2/MoS2 heterostructures for high-performance photo-detection. Nano Res 13:959–966

    Article  CAS  Google Scholar 

  10. Li X, Jia G, Du J, Song X, Xia C, Wei Z, Li J (2018) Type-II InSe/MoSe2 (WSe2) van der Waals heterostructures: vertical strain and electric field effects. J Mater Chem C 6:10010–10019

    Article  CAS  Google Scholar 

  11. Ferdous N, Islam MS, Biney J, Stampfl C, Park J (2022) Two-dimensional SiC/AlN based type-II van der Waals heterobilayer as a promising photocatalyst for overall water disassociation. Sci Rep 12:20106

    Article  CAS  Google Scholar 

  12. Tien T-M, Chung Y-J, Huang C-T, Chen EL (2022) Fabrication of WS2/WSe2 Z-scheme nano-heterostructure for efficient photocatalytic hydrogen production and removal of congo red under visible light. Catalysts 12:852

    Article  CAS  Google Scholar 

  13. Ma Z, Xu L, Dong K, Chen T, Xiong S, Peng B, Zeng J, Tang S, Li H, Huang X (2022) GaN/Surface-modified graphitic carbon nitride heterojunction: promising photocatalytic hydrogen evolution materials. Int J Hydrogen Energy 47:7202–7213

    Article  CAS  Google Scholar 

  14. Zhang K, Feng Y, Wang F, Yang Z, Wang J (2017) Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5:11992–12022

    Article  CAS  Google Scholar 

  15. Beshkova M, Yakimova R (2020) Properties and potential applications of two-dimensional AlN. Vacuum 176:109231

    Article  CAS  Google Scholar 

  16. Chen Y, Liu K, Liu J, Lv T, Wei B, Zhang T, Zeng M, Wang Z, Fu L (2018) Growth of 2D GaN single crystals on liquid metals. J Am Chem Soc 140:16392–16395

    Article  CAS  Google Scholar 

  17. Huang X, Xu L, Li H, Tang S, Ma Z, Zeng J, Xiong F, Li Z, Wang L-L (2021) Two-dimensional PtSe2/hBN vdW heterojunction as photoelectrocatalyst for the solar-driven oxygen evolution reaction: a first principles study. Appl Surf Sci 570:151207

    Article  CAS  Google Scholar 

  18. Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S, Grazianetti C, Chiappe D, Molle A, Fanciulli M (2013) Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag (111). Appl Phys Lett 103:251605

    Article  Google Scholar 

  19. De Almeida E, de Brito Mota F, De Castilho C, Kakanakova-Georgieva A, Gueorguiev GK (2012) Defects in hexagonal-AlN sheets by first-principles calculations. Eur Phys J B 85:1–9

    Article  Google Scholar 

  20. Wang H, Yu L, Xu J, Wei D, Qin G, Yao Y, Hu M (2021) Intrinsically low lattice thermal conductivity of monolayer hexagonal aluminum nitride (h-AlN) from first-principles: a comparative study with graphene. Int J Therm Sci 162:106772

    Article  CAS  Google Scholar 

  21. Rounaghi SA, Vanpoucke DE, Eshghi H, Scudino S, Esmaeili E, Oswald S, Eckert J (2017) A combined experimental and theoretical investigation of the Al-Melamine reactive milling system: a mechanistic study towards AlN-based ceramics. J Alloy Compd 729:240–248

    Article  CAS  Google Scholar 

  22. Banerjee A, Das BK, Chattopadhyay KK (2022) Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: a first principles study. Phys Chem Chem Phys 24:16065–16074

    Article  CAS  Google Scholar 

  23. Wang Q, Sun Q, Jena P, Kawazoe Y (2009) Potential of AlN nanostructures as hydrogen storage materials. ACS Nano 3:621–626

    Article  CAS  Google Scholar 

  24. Zou H, Peng M, Zhou W, Pan J, Ouyang F (2021) Type II GaS/AlN van der Waals heterostructure: vertical strain, in-plane biaxial strain and electric field effect. Physica E 126:114481

    Article  CAS  Google Scholar 

  25. Chang S-J, Wang S-Y, Huang Y-C, Chih JH, Lai Y-T, Tsai Y-W, Lin J-M, Chien C-H, Tang Y-T, Hu C (2022) van der Waals epitaxy of 2D h-AlN on TMDs by atomic layer deposition at 250 °C. Appl Phys Lett 120:162102

    Article  CAS  Google Scholar 

  26. Onen A, Kecik D, Durgun E, Ciraci S (2016) GaN: From three-to two-dimensional single-layer crystal and its multilayer van der Waals solids. Phys Rev B 93:085431

    Article  Google Scholar 

  27. Luo Q, Yin S, Sun X, Tang Y, Feng Z, Dai X (2023) GaN/BS van der Waals heterostructure: a direct Z-scheme photocatalyst for overall water splitting. Appl Surf Sci 609:155400

    Article  CAS  Google Scholar 

  28. Ren D, Tan X, Zhang T, Zhang Y (2019) Electronic and optical properties of GaN–MoS2 heterostructure from first-principles calculations. Chin Phys B 28:086104

    Article  CAS  Google Scholar 

  29. Qiao H, Zhang Y, Yan Z-H, Duan L, Ni L, Fan J-B (2022) A type-II GaN/InS van der Waals heterostructure with high solar-to-hydrogen efficiency of photocatalyst for water splitting. Appl Surf Sci 604:154602

    Article  CAS  Google Scholar 

  30. Yu Y, Fong PW, Wang S, Surya C (2016) Fabrication of WS2/GaN pn junction by wafer-scale WS2 thin film transfer. Sci Rep 6:37833

    Article  CAS  Google Scholar 

  31. Ren D, Li Y, Xiong W (2021) Vertically stacked GaN/WX2 (X= S, Se, Te) heterostructures for photocatalysts and photoelectronic devices. RSC Adv 11:35954–35959

    Article  CAS  Google Scholar 

  32. Moradpur-Tari E, Sarraf-Mamoory R, Yourdkhani A (2023) Structural, electronic, and electrochemical studies of WS2 phases using density functional theory and machine learning. Physica B 650:414568

    Article  CAS  Google Scholar 

  33. Li Q, Xu L, Luo K-W, Wang L-L, Li X-F (2018) SiC/MoS2 layered heterostructures: promising photocatalysts revealed by a first-principles study. Mater Chem Phys 216:64–71

    Article  CAS  Google Scholar 

  34. Zhang D, Zhou Z, Hu Y, Yang Z (2018) WS2/BSe van der Waals type-II heterostructure as a promising water splitting photocatalyst. Mater Res Express 6:035513

    Article  Google Scholar 

  35. Kim M-S, Don W-J, Hong S-I, Ri M-I, Yang S-I (2023) Photocatalytic property of two dimensional heterostructure MoS2/WS2 for hydrogen evolution via water splitting; a first principles calculation. Int J Hydrogen Energy 48:9371–9376

    Article  CAS  Google Scholar 

  36. Singh H, Lalla N, Deshpande U, Arora SK (2021) Engineered MoSe2/WSe2 based heterostructures for efficient hydrogen evolution reaction. Mater Today: Proc 45:4787–4791

    Article  Google Scholar 

  37. Meng R, Jiang J, Liang Q, Yang Q, Tan C, Sun X, Chen X (2016) Design of graphene-like gallium nitride and WS2/WSe2 nanocomposites for photocatalyst applications. Sci China Mater 59:1027–1036

    Article  CAS  Google Scholar 

  38. Vikraman D, Hussain S, Akbar K, Truong L, Kathalingam A, Chun S-H, Jung J, Park HJ, Kim H-S (2018) Improved hydrogen evolution reaction performance using MoS2–WS2 heterostructures by physicochemical process. ACS Sustain Chem Eng 6:8400–8409

    Article  CAS  Google Scholar 

  39. Luo Z, Li Y, Guo F, Zhang K, Liu K, Jia W, Zhao Y, Sun Y (2020) Carbon dioxide conversion with high-performance photocatalysis into methanol on NiSe2/WSe2. Energies 13:4330

    Article  CAS  Google Scholar 

  40. Yang J, Zhu J, Xu J, Zhang C, Liu T (2017) MoSe2 nanosheet array with layered MoS2 heterostructures for superior hydrogen evolution and lithium storage performance. ACS Appl Mater Interfaces 9:44550–44559

    Article  CAS  Google Scholar 

  41. Xia S, Diao Y, Kan C (2022) Electronic and optical properties of two-dimensional GaN/ZnO heterojunction tuned by different stacking configurations. J Colloid Interface Sci 607:913–921

    Article  CAS  Google Scholar 

  42. Tian J, Liu L, Lu F (2022) Tuning the electronic and optical properties of two-dimensional GaN/AlGaN heterostructure by vacancy defect. Appl Surf Sci 601:154269

    Article  CAS  Google Scholar 

  43. Liu Y, Jiang Z, Jia J, Robertson J, Guo Y (2023) 2D WSe2/MoSi2N4 type-II heterojunction with improved carrier separation and recombination for photocatalytic water splitting. Appl Surf Sci 611:155674

    Article  CAS  Google Scholar 

  44. Rehman SU, Tariq Z, Zou B, Butt FK, Zhang X, Feng S, Haq BU, Li C (2023) Type-I/Type-II Transition of MoSe2/g-GaN van der Waals heterostructures mediated by biaxial strain and electric field for overall water splitting. Mater Sci Eng, B 288:116195

    Article  Google Scholar 

  45. Lazaar K, Barhoumi M, Said M (2022) A DFT study of GaSe/AlN (ZnO) two-dimensional vdW heterostructure practiced as an encouraging photocatalyst for water splitting. Comput Mater Sci 201:110912

    Article  CAS  Google Scholar 

  46. Li H, Xu L, Huang X, Ou-Yang J, Chen M, Zhang Y, Tang S, Dong K, Wang L-L (2023) Two-dimensional C3N/WS2 vdW heterojunction for direct Z-scheme photocatalytic overall water splitting. Int J Hydrogen Energy 48:2186–2199

    Article  CAS  Google Scholar 

  47. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558

    Article  CAS  Google Scholar 

  48. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  49. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  51. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  52. Brugnoli L, Ferrari AM, Civalleri B, Pedone A, Menziani MC (2018) Assessment of density functional approximations for highly correlated oxides: the case of CeO2 and Ce2O3. J Chem Theory Comput 14:4914–4927

    Article  CAS  Google Scholar 

  53. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215

    Article  CAS  Google Scholar 

  54. Paier J, Marsman M, Hummer K, Kresse G, Gerber IC, Ángyán JG (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124:154709

    Article  CAS  Google Scholar 

  55. Liao J, Sa B, Zhou J, Ahuja R, Sun Z (2014) Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN (GaN) heterostructures. J Phys Chem C 118:17594–17599

    Article  CAS  Google Scholar 

  56. Wang G, Dang S, Zhang P, Xiao S, Wang C, Zhong M (2017) Hybrid density functional study on the photocatalytic properties of AlN/MoSe2, AlN/WS2, and AlN/WSe2 heterostructures. J Phys D Appl Phys 51:025109

    Article  Google Scholar 

  57. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  58. Momma K, Izumi F (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  CAS  Google Scholar 

  59. Wang V, Xu N, Liu JC, Tang G, Geng WT (2021) VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications 267, 108033. https://doi.org/10.1016/j.cpc.2021.108033

    Article  CAS  Google Scholar 

  60. Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt PS, Hinsche NF, Gjerding MN, Torelli D, Larsen PM, Riis-Jensen AC (2018) The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals. 2D Materials 5:042002

    Article  CAS  Google Scholar 

  61. Wang G, Tang W, Xie W, Tang Q, Wang Y, Guo H, Gao P, Dang S, Chang J (2022) Type-II CdS/PtSSe heterostructures used as highly efficient water-splitting photocatalysts. Appl Surf Sci 589:152931

    Article  CAS  Google Scholar 

  62. Zhang W, Yin Y, He C (2021) Spontaneous enhanced visible-light-driven photocatalytic water splitting on novel type-II GaSe/CN and Ga2SSe/CN vdW heterostructures. J Phys Chem Lett 12:5064–5075

    Article  CAS  Google Scholar 

  63. Chen J, Wei X, Zhang R, Liu J, Tian Y, Zhang Y, Guo T, Fan J, Ni L, Zhang M (2021) Type-II C2N/ZnTe Van Der Waals heterostructure: a promising photocatalyst for water splitting. Adv Mater Interfaces 8:2002068

    Article  CAS  Google Scholar 

  64. Abdul Nasir J, Munir A, Ahmad N, Tu Haq Z, Khan ZR (2021) Photocatalytic Z-Scheme overall water splitting: recent advances in theory and experiments. Adv Mater 33:2105195

    Article  CAS  Google Scholar 

  65. Li H, Guo C, Xiong Y, Yang Y (2020) Electric field induced band modulation of WS2-GeC heterostructures for efficient photocatalytic water splitting: a density functional theory study. Mater Chem Phys 244:122732

    Article  CAS  Google Scholar 

  66. Wang J, Rehman SU, Tariq Z, Zhang X, Zheng J, Butt FK, Li C (2021) Pristine and Janus chromium dichalcogenides: potential photocatalysts for overall water splitting in wide solar spectrum under strain and electric field. Sol Energy Mater Sol Cells 230:111258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Jiangxi Provincial Natural Science Foundation, China (Grant Nos. 20212BAB201013 and 20202ACBL211004), and the National Natural Science Foundation, China (Grant Nos. 52263031 and 11764018).

Author information

Authors and Affiliations

Authors

Contributions

JT was involved in data curation, formal analysis, writing—original draft and visualization. LH was involved in writing—review and editing and supervision. SX was involved in conceptualization and project administration. L-XL was involved in validation. L-LW was involved in project administration. LX was involved in conceptualization, investigation, writing—review and editing, visualization, supervision, resources and project administration.

Corresponding authors

Correspondence to Lin Huang, Liang-Xing Li or Liang Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, J., Huang, L., Xiong, S. et al. Two-dimensional TMDs/MN (M = Al, Ga) van der Waals heterojunction photocatalyst: a first-principles study. J Mater Sci 58, 14080–14095 (2023). https://doi.org/10.1007/s10853-023-08904-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08904-7

Navigation