Skip to main content
Log in

Interfacial H-bonding enabled liquid metal integrated multifunctional elastomeric architectures

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, liquid metal (LM)-based multifunctional soft composites are an emerging class of materials with transformative potential towards flexible electronics, soft robotics, and reconfigurable functionality. Herein, we report an innovative soft bi-phasic composite system by exploiting the H-bonding interaction of LMs with a chemically modified styrenic block copolymer chain, resulting in a soft and ultrastretchable elastomeric material architecture with excellent multifunctional properties. The influence of microstructure and interfacial interactions on the multifunctional properties has been established and also validated using various mathematical models such as Eshelby’s approach, modified Cole–Cole model, and effective medium theory to understand the origin of the unique properties of such materials. The resulting composites exhibit a significant fourfold improvement in the dielectric permittivity and more than 350% improvement in thermal conductivity over neat polymer while maintaining deformability with more than 1400% strain at break. This work provides a cost-effective, facile, and scalable approach to the construction of soft multifunctional composites for soft matter engineering applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Majidi C, Alizadeh K, Ohm Y, Silva A, Tavakoli M (2022) Liquid metal polymer composites: from printed stretchable circuits to soft actuators. Flex Print Electron 7:013002

    Article  Google Scholar 

  2. Majidi C (2019) Soft-matter engineering for soft robotics. Adv Mater Technol 4:1800477

    Article  Google Scholar 

  3. Majidi C (2014) Soft robotics: a perspective—current trends and prospects for the future. Soft Robot 1:5–11

    Article  Google Scholar 

  4. Lin Y, Cooper C, Wang M, Adams JJ, Genzer J, Dickey MD (2015) Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 11:6397–6403

    Article  CAS  Google Scholar 

  5. Kazem N, Hellebrekers T, Majidi C (2017) Soft multifunctional composites and emulsions with liquid metals. Adv Mater 29:1605985

    Article  Google Scholar 

  6. Natarajan TS, Finger S, Lacayo-Pineda J, Bhagavatheswaran ES, Banerjee SS, Heinrich G et al (2020) Robust triboelectric generators by all-in-one commercial rubbers. ACS Appl Electron Mater 2:4054–4064

    Article  CAS  Google Scholar 

  7. Maiti M, Bhattacharya M, Bhowmick AK (2008) Elastomer nanocomposites. Rubber Chem Technol 81:384–469

    Article  CAS  Google Scholar 

  8. Chowdhury SG, Chanda J, Ghosh S, Banerjee K, Banerjee SS, Das A et al (2020) Impact of adhesive ingredients on adhesion between rubber and brass-plated steel wire in tire. Polym Eng Sci 60:1973–1983

    Article  CAS  Google Scholar 

  9. Khasim S, Pasha A, Badi N, Lakshmi M, Mishra YK (2020) High performance flexible supercapacitors based on secondary doped PEDOT–PSS–graphene nanocomposite films for large area solid state devices. RSC Adv 10:10526–10539

    Article  CAS  Google Scholar 

  10. Bilodeau RA, Nasab AM, Shah DS, Kramer-Bottiglio R (2020) Uniform conductivity in stretchable silicones via multiphase inclusions. Soft Matter 16:5827–5839

    Article  CAS  Google Scholar 

  11. Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishra YK (2018) Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater Today Energy 9:154–186

    Article  Google Scholar 

  12. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780

    Article  CAS  Google Scholar 

  13. Ata S, Kobashi K, Yumura M, Hata K (2012) Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers. Nano Lett 12:2710–2716

    Article  CAS  Google Scholar 

  14. Park IS, Kim KJ, Nam JD, Lee J, Yim W (2007) Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon nanotubes as a nanofiller. Polym Eng Sci 47:1396–1405

    Article  CAS  Google Scholar 

  15. Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21:631–651

    Article  CAS  Google Scholar 

  16. Banerjee SS, Mandal S, Arief I, Layek RK, Ghosh AK, Yang K et al (2021) Designing supertough and ultrastretchable liquid metal-embedded natural rubber composites for soft-matter engineering. ACS Appl Mater Interfaces 13:15610–15620

    Article  CAS  Google Scholar 

  17. Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP, Wettlaufer JS et al (2015) Stiffening solids with liquid inclusions. Nat Phys 11:82–87

    Article  CAS  Google Scholar 

  18. Dickey MD (2017) Stretchable and soft electronics using liquid metals. Adv Mater 29:1606425

    Article  Google Scholar 

  19. Lake G, Thomas A (1967) Proc R Soc London. Ser. A. 300:108–119

    Article  CAS  Google Scholar 

  20. Kazem N, Bartlett MD, Majidi C (2018) Extreme toughening of soft materials with liquid metal. Adv Mater 30:1706594

    Article  Google Scholar 

  21. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv Funct Mater 18:1097–1104

    Article  CAS  Google Scholar 

  22. Boley JW, White EL, Kramer RK (2015) Mechanically sintered gallium–indium nanoparticles. Adv Mater 27:2355–2360

    Article  CAS  Google Scholar 

  23. Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X et al (2022) Functional polymer materials for modern marine biofouling control. Prog Polym Sci 127:101516

    Article  CAS  Google Scholar 

  24. Wang Y, Yu Z, Mao G, Liu Y, Liu G, Shang J et al (2019) Printable liquid-metal@ PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy. Adv Mater Technol 4:1800435

    Article  Google Scholar 

  25. Wang Y, Gao Y-N, Yue T-N, Chen X-D, Wang M (2021) Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals. Appl Surf Sci 563:150255

    Article  CAS  Google Scholar 

  26. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C (2016) Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv Mater 28:3726–3731

    Article  CAS  Google Scholar 

  27. Wang J, Cai G, Li S, Gao D, Xiong J, Lee PS (2018) Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal particles. Adv Mater 30:1706157

    Article  Google Scholar 

  28. Awasthi P, Banerjee SS (2021) Fused deposition modeling of thermoplastic elastomeric materials: challenges and opportunities. Addit Manuf 46:102177

    CAS  Google Scholar 

  29. Awasthi P, Banerjee SS (2022) Design of ultrastretchable and superelastic tailorable hydrophilic thermoplastic elastomeric materials. Polymer. 2022:124914

    Article  Google Scholar 

  30. Haque AT, Tutika R, Byrum RL, Bartlett MD (2020) Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv Funct Mater 30:2000832

    Article  CAS  Google Scholar 

  31. Zhu S, So JH, Mays R, Desai S, Barnes WR, Pourdeyhimi B et al (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  CAS  Google Scholar 

  32. Silva CA, Lv J, Yin L, Jeerapan I, Innocenzi G, Soto F et al (2020) Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv Funct Mater 30:2002041

    Article  CAS  Google Scholar 

  33. Ford MJ, Patel DK, Pan C, Bergbreiter S, Majidi C (2020) Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv Mater 32:2002929

    Article  CAS  Google Scholar 

  34. Khondoker MA, Ostashek A, Sameoto D (2019) Direct 3D printing of stretchable circuits via liquid metal co-extrusion within thermoplastic filaments. Adv Eng Mater 21:1900060

    Article  Google Scholar 

  35. Le Moigne GJ-M (1958) A study of the factors which affect the application of stokes’law to particle-size determination by sedimentation. Cornell University, Newyork

    Google Scholar 

  36. Daeneke T, Khoshmanesh K, Mahmood N, De Castro IA, Esrafilzadeh D, Barrow S et al (2018) Liquid metals: fundamentals and applications in chemistry. Chem Soc Rev 47:4073–4111

    Article  CAS  Google Scholar 

  37. Thrasher CJ, Farrell ZJ, Morris NJ, Willey CL, Tabor CE (2019) Mechanoresponsive polymerized liquid metal networks. Adv Mater 31:1903864

    Article  CAS  Google Scholar 

  38. Pozarycki TA, Hwang D, Barron EJ III, Wilcox BT, Tutika R, Bartlett MD (2022) Tough bonding of liquid metal-elastomer composites for multifunctional adhesives. Small. 2022:2203700

    Article  Google Scholar 

  39. Doudrick K, Liu S, Mutunga EM, Klein KL, Damle V, Varanasi KK et al (2014) Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-based liquid metals. Langmuir 30:6867–6877

    Article  CAS  Google Scholar 

  40. Xie S-M, Zhao X, Peng L-M, Yu P, Zha X-J, Ke K et al (2022) In situ interfacial engineering enabled mechanically adaptive and highly stretchable liquid metal conductor. Polymer 240:124482

    Article  CAS  Google Scholar 

  41. Kim T, Kim D-M, Lee BJ, Lee J (2019) Soft and deformable sensors based on liquid metals. Sensors. 19:4250

    Article  CAS  Google Scholar 

  42. Li H, Qiao R, Davis TP, Tang S-Y (2020) Biomedical applications of liquid metal nanoparticles: a critical review. Biosensors 10:196

    Article  CAS  Google Scholar 

  43. Perez-Camacho O, Gonzalez-Roa C, Navarro-Rodriguez D, Zaragoza-Contreras D (1997) Preparation of hydroxyl-functionalized SEBS for in situ graft reaction compatibilizing agents. J Appl Polym Sci 64:2519–2528

    Article  CAS  Google Scholar 

  44. Chuang P-L, Nien Y-H (2020) Preparation and characterization of maleic anhydride grafted SEBS/silica composites through modification by ethanolamine. Polym Bull 77:2521–2537

    Article  CAS  Google Scholar 

  45. Bark H, Lee PS (2021) Surface modification of liquid metal as an effective approach for deformable electronics and energy devices. Chem Sci 12:2760–2777

    Article  CAS  Google Scholar 

  46. Lu H, Tang S-Y, Dong Z, Liu D, Zhang Y, Zhang C et al (2020) Dynamic temperature control system for the optimized production of liquid metal nanoparticles. ACS Appl Nano Mater 3:6905–6914

    Article  CAS  Google Scholar 

  47. Ganguly A, Bhowmick AK (2009) Effect of polar modification on morphology and properties of styrene-(ethylene-co-butylene)-styrene triblock copolymer and its montmorillonite clay-based nanocomposites. J Mater Sci 44:903–918. https://doi.org/10.1007/s10853-008-3183-z

    Article  CAS  Google Scholar 

  48. Lin Y, Genzer J, Dickey MD (2020) Attributes, fabrication, and applications of gallium-based liquid metal particles. Adv Sci 7:2000192

    Article  CAS  Google Scholar 

  49. Fan B, Wan J, Liu Y, Tian WW, Thang SH (2021) Functionalization of liquid metal nanoparticles via the RAFT process. Polym Chem 12:3015–3025

    Article  CAS  Google Scholar 

  50. Zhang M, Li G, Huang L, Ran P, Huang J, Yu M et al (2021) Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl Mater Today 22:100903

    Article  Google Scholar 

  51. Tevis ID, Newcomb LB, Thuo M (2014) Synthesis of liquid core–shell particles and solid patchy multicomponent particles by shearing liquids into complex particles (SLICE). Langmuir 30:14308–14313

    Article  CAS  Google Scholar 

  52. Markvicka EJ, Bartlett MD, Huang X, Majidi C (2018) An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat Mater 17:618–624

    Article  CAS  Google Scholar 

  53. Banerjee PS, Rana DK, Banerjee SS (2022) Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials. Adv. Colloid Interface Sci. 2022:102752

    Article  Google Scholar 

  54. Tutika R, Kmiec S, Haque AT, Martin SW, Bartlett MD (2019) Liquid metal–elastomer soft composites with independently controllable and highly tunable droplet size and volume loading. ACS Appl Mater Interfaces 11:17873–17883

    Article  CAS  Google Scholar 

  55. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Math Phys Eng Sci 241:376–396

    Google Scholar 

  56. Style RW, Wettlaufer JS, Dufresne ER (2015) Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11:672–679

    Article  CAS  Google Scholar 

  57. Diani J, Fayolle B, Gilormini P (2009) A review on the Mullins effect. Eur Polym J 45:601–612

    Article  CAS  Google Scholar 

  58. Shi Y, Liu F, Wang Z (2018) Mullins effect and its reversibility for compatibilised thermoplastic elastomers based on high-density polyethylene/waste ground rubber tyre powder under compression mode. Plast Rubber Compos 47:373–380

    Article  CAS  Google Scholar 

  59. Sui T, Salvati E, Ying S, Sun G, Dolbnya I, Dragnevski K et al (2017) Strain softening of nano-scale fuzzy interfaces causes Mullins effect in thermoplastic polyurethane. Sci Rep 7:1–9

    Article  Google Scholar 

  60. Webber RE, Creton C, Brown HR, Gong JP (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40:2919–2927

    Article  CAS  Google Scholar 

  61. Tang Z, Chen F, Chen Q, Zhu L, Yan X, Chen H et al (2017) The energy dissipation and Mullins effect of tough polymer/graphene oxide hybrid nanocomposite hydrogels. Polym Chem 8:4659–4672

    Article  CAS  Google Scholar 

  62. Dalai S, Parida C (2022) Interpretation of Cole-Cole dielectric dispersion of green composites from medical LINAC modified luffa fiber/PLA. J. Mater. Sci. Mater. Electron. 33:6911–6925

    Article  CAS  Google Scholar 

  63. Das A, Sinha S, Mukherjee A, Meikap A (2015) Enhanced dielectric properties in polyvinyl alcohol–Multiwall carbon nanotube composites. Mater Chem Phys 167:286–294

    Article  CAS  Google Scholar 

  64. Abdelkafi Z, Abdelmoula N, Khemakhem H, Bidault O, Maglione M (2006) Dielectric relaxation in Ba Ti 0.85 (Fe 1∕ 2 Nb 1∕ 2) 0.15 O 3 perovskite ceramic. J. Appl. Phys. 100:114111-1-114111-6

    Article  Google Scholar 

  65. Choy TC (2015) Effective medium theory: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  66. Garnett JMXII (1904) Colours in metal glasses and in metallic films. Philos Trans Royal Soc A 203:385–420

    CAS  Google Scholar 

  67. Zeng X, Bergman D, Hui P, Stroud D (1988) Effective-medium theory for weakly nonlinear composites. Phys Rev B 38:10970-10973

    Article  CAS  Google Scholar 

  68. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699

    Article  CAS  Google Scholar 

  69. Ordóñez-Miranda J, Alvarado-Gil J, Medina-Ezquivel R (2010) Generalized Bruggeman formula for the effective thermal conductivity of particulate composites with an interface layer. Int J Thermophys 31:975–986

    Article  Google Scholar 

Download references

Acknowledgements

Pratip Sankar Banerjee acknowledges the Prime Minister's Research Fellowship (PMRF) for necessary funding and support for this research work. Authors acknowledge Magnetics and Advanced Ceramics Lab, Department of Physics, Indian Institute of Technology Delhi (IIT-D), for providing the facilities for dielectric spectroscopic analysis. The characterization facilities of FESEM, TEM, and contact angle studies have been provided by the Central Research Facility (CRF), IIT-D, which is greatly acknowledged. Pratip Sankar Banerjee also thankfully acknowledges Aiswarya S (research scholar, DMSE, IIT Delhi) for her support in the preparation of the graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

PSB helped in conceptualization, investigation, experimentation, formal analysis, writing—original draft, preparation, and visualization. SSB helped in conceptualization, visualization, writing—review and editing, validation, supervision, and funding acquisition.

Corresponding author

Correspondence to Shib Shankar Banerjee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 783 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P.S., Banerjee, S.S. Interfacial H-bonding enabled liquid metal integrated multifunctional elastomeric architectures. J Mater Sci 58, 14009–14028 (2023). https://doi.org/10.1007/s10853-023-08894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08894-6

Navigation