Skip to main content
Log in

Numerical Investigation on the Piezo-Resistive Effect of Ga-Based Liquid Metal Filled Elastomers

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium-based liquid metal/elastomer matrix composites (LMECs) have attracted increasing attention in stretchable electronics, soft robots and sensors due to their combination of high electrical conductivity and liquid fluidity. Their electrical performance is significantly dependent on droplet size, morphology and the Ga2O3 layer surrounding the LM droplets. Numerical results demonstrated that imposing only a mild pressure of 0.25 MPa could lead to the rupture of LM droplets during mechanical sintering. The electromechanical stability in body-centered cubic (BCC) architecture was higher than that in face-centered cubic (FCC) architecture. Additionally, the orientation of chained LM droplets against the stretching direction greatly affects the resistance variation, and the simulated network morphology can better replicate the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from YPJ upon reasonable request.

References

  1. E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618 (2018).

    Article  CAS  Google Scholar 

  2. R. Tutika, S. Kmiec, A.B.M. Tahidul Haque, S.W. Martin, and M.D. Bartlett, Liquid metal–elastomer soft composites with independently controllable and highly tunable droplet size and volume loading. ACS Appl. Mater. Interfaces 11, 17873 (2019).

    Article  CAS  Google Scholar 

  3. A. Fassler and C. Majidi, Liquid-phase metal inclusions for a conductive polymer composite. Adv. Mater. 27, 1928 (2015).

    Article  CAS  Google Scholar 

  4. Y.L. Lin, C. Cooper, M. Wang, J.J. Adams, J. Genzer, and M.D. Dickey, Handwritten, soft circuit boards and antennas using liquid metal nanoparticles. Small 48, 6397 (2015).

    Article  Google Scholar 

  5. M.G. Saborio, S.X. Cai, J.B. Tang, M.B. Ghasemian, M. Mayyas, J.L. Han, M.J. Christoe, S.H. Peng, P. Koshy, D. Esrafilzadeh, R. Jalili, C.H. Wang, and K. Kalantar-Zadeh, Liquid metal droplet and graphene co-fillers for electrically conductive flexible composites. Small 16, 1903753 (2020).

    Article  CAS  Google Scholar 

  6. J.Y. Yang, D. Tang, J.P. Ao, T. Ghosh, T.V. Neumann, D.G. Zhang, E. Piskarev, T.T. Yu, V.K. Truong, K. Xie, Y.C. Lai, Y. Li, and M.D. Dickey, Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Adv. Funct. Mater. 30, 2002611 (2020).

    Article  CAS  Google Scholar 

  7. A. Ozcariz, D.A. Piña-Azamar, C.R. Zamarreño, R. Dominguez, and F.J. Arregui, Aluminum doped zinc oxide (AZO) coated optical fiber LMR refractometers—an experimental demonstration. Sens. Actuators B Chem. 281, 698 (2019).

    Article  CAS  Google Scholar 

  8. J. Zhang, M. Liu, G. Pearce, Y.Y. Yu, Z. Sha, Y. Zhou, A.C.Y. Yuen, C.Y. Tao, C. Boyer, F. Huang, M. Islam, and C.H. Wang, Strain stiffening and positive piezoconductive effect of liquid metal/elastomer soft composites. Compos. Sci. Technol. 201, 108497 (2021).

    Article  CAS  Google Scholar 

  9. Q.T. Zhang, G.L. Yun, B.L. Zhao, H.D. Lu, S.W. Zhang, S.Y. Tang, and W.H. Li, Highly stretchable and sensitive strain sensor based on liquid metal composite for wearable sign language communication device. Smart Mater. Struct. 30, 115005 (2021).

    Article  CAS  Google Scholar 

  10. Z. Wang, X. Xia, M. Zhu X. Zhang, R. Liu, J. Ren, J. Yang, M. Li, J. Jiang, Y. Liu, Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32, 2108336 (2022).

    Article  CAS  Google Scholar 

  11. N. Cohen and K. Bhattacharya, A numerical study of the electromechanical response of liquid metal embedded elastomers. Int. J. Nonlinear. Mech. 108, 81 (2019).

    Article  Google Scholar 

  12. Y.Y. Zhao, P. Khandagale, and C. Majidi, Modeling electromechanical coupling of liquid metal embedded elastomers while accounting stochasticity in 3D percolation. Extreme Mech. Lett 48, 101443 (2021).

    Article  Google Scholar 

  13. N. Zolfaghari, P. Khandagale, M.J. Ford K. Dayal, C. Majidi, Network topologies dictate electromechanical coupling in liquid metal–elastomer composites. Soft Matter 16, 8818 (2020).

    Article  CAS  Google Scholar 

  14. Y.P. Jiang, Y. Zhu, and T.Y. Li, Computational micromechanics of the elastic behaviors of liquid metal–elastomer composites. MRS Commun. 12, 465 (2022).

    Article  CAS  Google Scholar 

  15. N.J. Morris, Z.J. Farrell, and C.E. Tabor, Chemically modifying the mechanical properties of core–shell liquid metal nanoparticles. Nanoscale 11, 17308 (2019).

    Article  CAS  Google Scholar 

  16. C. Pan, E.J. Markvicka, M.H. Malakooti J. Yan, L. Hu, K. Matyjaszewski, C. Majidi, A liquid-metal–elastomer nanocomposite for stretchable dielectric materials. Adv. Mater. 31, 1900663 (2019).

    Article  Google Scholar 

  17. H.W. Bark and P.S. Lee, Surface modification of liquid metal as an effective approach for deformable electronics and energy devices. Chem. Sci. 12, 2760 (2021).

    Article  CAS  Google Scholar 

  18. M.D. Dickey, R.C. Chiechi, R.J. Larsen, E.A. Weiss, D.A. Weitz, and G.M. Whitesides, Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 18, 1097 (2008).

    Article  CAS  Google Scholar 

  19. M.D. Dickey, EML webinar overview: Liquid metals at the extreme. Extreme. Mech. Lett. 40, 100863 (2020).

    Article  Google Scholar 

  20. A.R. Jacob, D.P. Parekh, M.D. Dickey, and L.C. Hsiao, Interfacial rheology of gallium-based liquid metals. Langmuir 35, 11774 (2019).

    Article  CAS  Google Scholar 

  21. R.J. Larsen, M.D. Dickey, G.M. Whitesides, and D.A. Weitz, Viscoelastic properties of oxide-coated liquid metals. J. Rheol. 53, 1305 (2009).

    Article  CAS  Google Scholar 

  22. ABAQUS, Version 6.11 Documentation, Dassault Systemes Simulia Corp. (2011).

  23. M.H. Malakooti, M.R. Bockstaller, K. Matyjaszewski, and C. Majidi, Liquid metal nanocomposites. Nanoscale Adv. 2, 2668 (2020).

    Article  CAS  Google Scholar 

  24. N.J. Morris, Z.J. Farrell, and C.E. Tabor, Chemically modifying the mechanical properties of core-shell liquid metal nanoparticles. Nanoscale 11, 17308 (2019).

    Article  CAS  Google Scholar 

  25. C. Chiew and M.H. Malakooti, A double inclusion model for liquid metal polymer composites. Compos. Sci. Technol. 208, 108752 (2021).

    Article  CAS  Google Scholar 

  26. M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter, and C. Majidi, Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 32(46), 2002929 (2020).

    Article  CAS  Google Scholar 

  27. M.D. Bartlett, A. Fassler, N. Kazem, E.J. Markvicka, P. Mandal, and C. Majidi, Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv. Mater. 28, 3726 (2016).

    Article  CAS  Google Scholar 

  28. S.Q. Liang, Y.Y. Li, Y.Z. Chen, J.B. Yang, T.P. Zhu, D.Y. Zhu, C.X. He, Y.Z. Liu, S. Handschuh-Wang, and X.C. Zhou, Liquid metal sponges for mechanically durable, all-soft, electrical conductors. J. Mater. Chem. C 5, 1586 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (NS2022012)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Jiang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Modeling of critical pressure in mechanical sintering

See Figs. 5

Fig. 5
figure 5

Unit cell of LMEC.

,

Fig. 6
figure 6

The critical pressure to be determined by the divergence between the pressure-stretch ratio curves and the associated rupture contour of LM droplets. Here, the pressure-stretch ratio curve with damage criterion deviates from that with no damage effect at a critical point, whereby the corresponding pressure at this point was assigned as the minimum pressure to break LM droplets.

6,

Fig. 7
figure 7

Three models with varied orientation angles, where VP = 13.8%, L is the cell model length with L = 100 nm, dLM is LM droplet diameter dLM = 42 nm, and t denotes Ga2O3 layer thickness with t = 3 nm.

7 and

Fig. 8
figure 8

Dependence of critical pressure on the elastomer stiffness, and the red line is added just for guided reading.

8

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhu, Y. Numerical Investigation on the Piezo-Resistive Effect of Ga-Based Liquid Metal Filled Elastomers. J. Electron. Mater. 53, 499–507 (2024). https://doi.org/10.1007/s11664-023-10792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10792-1

Keywords

Navigation