Skip to main content

Advertisement

Log in

Facile synthesis and characterization of a new class of zirconium quantum dots (Zr QDs) for hydrogen peroxide sensing

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The zirconium QDs have been synthesized using the chemical reduction method by using sodium borohydride as a reducing agent. The purity of the synthesized QDs was determined using EDS and EDX techniques. The XRD data indicate that the Zr QDs exist in both cubic and hexagonal lattice forms. The morphology of the Zr QDs is characterized by HRTEM and FESEM as homogeneous, small, spherical QDs of 5 nm to 6 nm diameter. The QDs exhibit chemiluminescence. The H2O2 sensitivities of Zr QDs have been studied. The changes in the intensity of emission spectra of Zr QDs at different wavelengths (406 nm, 430 nm, and 413 nm) satisfy the Stern–Volmer equation, thus proving to be promising candidates for their applications in biological science and as energy materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Emsley J (2012) Nature’s building blocks: everything you need to know about the elements (new edition). Ref Rev 26:43–44. https://doi.org/10.1108/09504121211278368

    Article  Google Scholar 

  2. Nielsen RH, Wilfing G (2010) Zirconium and zirconium compounds. In: Ley C, Elvers B (ed) Ullmann’s encyclopedia of industrial chemistry. John Wiley & Sons Ltd, Hoboken, pp 753–758

    Google Scholar 

  3. Lide DR (2005) Hardness of minerals and ceramics. In: Haynes WM, Lide DR, Bruno TJ (eds) CRC handbook of chemistry and physics. CRC Press, Boca Raton, pp 2313–2314

    Google Scholar 

  4. Eshed M, Pol S, Gedanken A, Balasubramanian M (2011) Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method. Beilstein J Nanotechnol 2:198–203. https://doi.org/10.3762/bjnano.2.23

    Article  CAS  Google Scholar 

  5. Ahmed SR, Kang SW, Oh S, Lee J, Neethirajan S (2018) Chiral zirconium quantum dots: a new class of nanocrystals for optical detection of coronavirus. Heliyon 4:1–17. https://doi.org/10.1016/j.heliyon.2018.e00766

    Article  Google Scholar 

  6. Tekin Z, Borahan T, Özdoǧan N, Bakirdere S (2020) Peristaltic pump-assisted zirconium nanoparticle-based pipette-tip solid phase extraction for the determination of cobalt by slotted quartz tube-flame atomic absorption spectrophotometry. Anal Methods 12:1244–1249. https://doi.org/10.1039/c9ay02762a

    Article  CAS  Google Scholar 

  7. Sigwadi R, Dhlamini M, Mokrani T, Nemavhola F (2019) Preparation of a high surface area zirconium oxide for fuel cell application. Int J Mech Mater Eng 14:1–11. https://doi.org/10.1186/s40712-019-0102-9

    Article  Google Scholar 

  8. Hu C, Sun J, Long C, Wu L, Zhou C, Zhang X (2019) Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev 8:396–404. https://doi.org/10.1515/ntrev-2019-0035

    Article  CAS  Google Scholar 

  9. Babu CR, Reddy NRM, Reddy K (2015) Synthesis and characterization of high dielectric nano zirconium oxide. Ceram Int 41:10675–10679. https://doi.org/10.1016/j.ceramint.2015.04.168

    Article  CAS  Google Scholar 

  10. Cao H, Qiu X, Luo B, Liang Y, Zhang Y, Tan R, Zhao M, Zhu Q (2004) Synthesis and room-temperature ultraviolet photoluminescence properties of Zirconia nanowires. Adv Funct Mater 14:243–246. https://doi.org/10.1002/adfm.200305033

    Article  CAS  Google Scholar 

  11. Arantes TM, Mambrini GP, Stroppa DG, Leite ER, Longo E, Ramirez AJ, Camargo ER (2010) Stable colloidal suspensions of nanostructured zirconium oxide synthesized by hydrothermal process. J Nanoparticle Res 12:3105–3110. https://doi.org/10.1007/s11051-010-9906-5

    Article  CAS  Google Scholar 

  12. Dwivedi R, Maurya A, Verma A, Prasad R, Bartwal KS (2011) Microwave assisted sol-gel synthesis of tetragonal zirconia nanoparticles. J Alloys Compd 509:6848–6851. https://doi.org/10.1016/j.jallcom.2011.03.138

    Article  CAS  Google Scholar 

  13. Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488. https://doi.org/10.1039/b812943f

    Article  CAS  Google Scholar 

  14. Kalkal A, Pradhan R, Kadian S, Manik G, Packirisamy G (2020) Biofunctionalized graphene quantum dots based fluorescent biosensor toward efficient detection of small cell lung cancer. ACS Appl Bio Mater 3:4922–4932. https://doi.org/10.1021/acsabm.0c00427

    Article  CAS  Google Scholar 

  15. Ma F, Chen LC, Yang ZC (2018) Development of quantum dot-based biosensors: principles and applications. J Mater Chem B 6:6173–6190. https://doi.org/10.1039/c8tb01869c

    Article  CAS  Google Scholar 

  16. Chandradass J, Balasubramanian M, Kim KH (2011) Solution phase synthesis of t-ZrO2 nanoparticles in ZrO2-SiO2 mixed oxide. J Exp Nanosci 6:38–48. https://doi.org/10.1080/17458081003762813

    Article  CAS  Google Scholar 

  17. Bumajdad A, Nazeer AA, Al Sagheer F, Nahar S, Zaki MI (2018) Controlled synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-22088-0

    Article  CAS  Google Scholar 

  18. He XL, Tang RJ, Yang F, Kadhim MS, Wang JX, Pu Y, Wang D (2019) Zirconia quantum dots for a nonvolatile resistive random access memory device. Front Inf Technol Electron Eng 20:1698–1705. https://doi.org/10.1631/FITEE.1900363

    Article  Google Scholar 

  19. Van TT, Nguyen DTC, Kumar PS, Din ATM, Jalil AA, Vo DVN (2022) Green synthesis of ZrO2 nanoparticles and nanocomposites for biomedical and environmental applications: a review. Environ Chem Lett 20:1309–1331

    Article  Google Scholar 

  20. Alagarsamy A, Chandrasekaran S, Manikandan A (2022) Green synthesis and characterization studies of biogenic zirconium oxide (ZrO2) nanoparticles for adsorptive removal of methylene blue dye. J Mol Struct 1247:1–16. https://doi.org/10.1016/j.molstruc.2021.131275

    Article  CAS  Google Scholar 

  21. Wang G, Zhang W, Li J, Dong X, Zhang X (2019) Carbon quantum dots decorated BiVO 4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. J Mater Sci 54:6488–6499. https://doi.org/10.1007/s10853-019-03316-y

    Article  CAS  Google Scholar 

  22. Wang R, Wei X, Qin R, Tao P, Qin L, Liang H (2017) Green synthesis of white-light-emitting ZnSe: Eu2+, Mn2+ quantum dots in an aqueous solution. J Mater Sci 52:6994–6998. https://doi.org/10.1007/s10853-017-0932-x

    Article  CAS  Google Scholar 

  23. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  24. Oh WK, Jeong YS, Kim S, Jang J (2012) Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide. ACS Nano 6:8516–8524. https://doi.org/10.1021/nn204899m

    Article  CAS  Google Scholar 

  25. Quyen TTB, My NNT, Pham DT, Thien DVH (2022) Synthesis of TiO2 nanosheets/graphene quantum dots and its application for detection of hydrogen peroxide by photoluminescence spectroscopy. Talanta Open 5:1–8. https://doi.org/10.1016/j.talo.2022.100103

    Article  Google Scholar 

  26. Wei X, Qian Z, Xu S, Zhu L, Wang X (2022) Preparation of carbon-based quantum dots and metal nanocomposites and their applications in sensors. Ferroelectrics 596:214–233. https://doi.org/10.1080/00150193.2022.2087262

    Article  CAS  Google Scholar 

  27. Mao W, Dai L, Hu L, Song J, Huang T, Wang M (2022) Dual-channel fluorescent imaging of reactive oxygen species in living cells based on Ce(III) modified quantum dots with oxidation triggered phosphatase-like activity. Sens Actuators B Chem 367:1–6. https://doi.org/10.1016/j.snb.2022.132178

    Article  CAS  Google Scholar 

  28. Bhunia SK, Dolai S, Sun H, Jelinek R (2018) “On/off/on” hydrogen-peroxide sensor with hemoglobin-functionalized carbon dots. Sens Actuators, B Chem 270:223–230. https://doi.org/10.1016/j.snb.2018.05.029

    Article  CAS  Google Scholar 

  29. Ma J, Wang X, Li N, Cheng Y (2021) A bifunctional probe that allows dual-channel fluorescence turn-on detection of protein aggregates and hydrogen peroxide in neurodegenerative diseases. Sens Actuators B Chem 346:1–8. https://doi.org/10.1016/j.snb.2021.130536

    Article  CAS  Google Scholar 

  30. Li Z, Guo S, Yuan Z, Lu C (2017) Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sens Actuators, B Chem 241:821–827. https://doi.org/10.1016/j.snb.2016.10.134

    Article  CAS  Google Scholar 

  31. Sebastian D, Kala R, Neethu Parvathy KP, Savitha DP (2021) A fluorescent probe based on visible light-emitting functionalized graphene quantum dots for the sensitive and selective detection of Pb (II) ions. J Mater Sci 56:18126–18146. https://doi.org/10.1007/s10853-021-06478-w

    Article  CAS  Google Scholar 

  32. Jin E, Bian X, Lu X, Wang C (2012) Fabrication of multiwalled carbon nanotubes/polypyrrole/Prussian blue ternary composite nanofibers and their application for enzymeless hydrogen peroxide detection. J Mater Sci 47:4326–4331. https://doi.org/10.1007/s10853-012-6283-8

    Article  CAS  Google Scholar 

  33. Dhara K, Mahapatra DR (2019) Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review. J Mater Sci 54:12319–12357. https://doi.org/10.1007/s10853-019-03750-y

    Article  CAS  Google Scholar 

  34. Ma F, Zhang Q, Zhang CY (2019) Catalytic self-assembly of quantum-dot-based microRNA nanosensor directed by toehold-mediated strand displacement cascade. Nano Lett 19:6370–6376. https://doi.org/10.1021/acs.nanolett.9b02544

    Article  CAS  Google Scholar 

  35. Hu J, Liu MH, Zhang CY (2019) Construction of tetrahedral DNA-quantum dot nanostructure with the integration of multistep förster resonance energy transfer for multiplex enzymes assay. ACS Nano 13:7191–7201. https://doi.org/10.1021/acsnano.9b02679

    Article  CAS  Google Scholar 

  36. Zhang C, Johnson LW (2007) Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit. Angew Chemie Int Ed 46:3482–3485. https://doi.org/10.1002/anie.200604861

    Article  CAS  Google Scholar 

  37. Patel AS, Mohanty T (2014) Silver nanoclusters in BSA template: a selective sensor for hydrogen peroxide. J Mater Sci 49:2136–2143. https://doi.org/10.1007/s10853-013-7906-4

    Article  CAS  Google Scholar 

  38. Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem Rev 115:11669–11717

    Article  CAS  Google Scholar 

  39. Wang ZY, Yuan H, Li DL, Hu J, Qiu JG, Zhang CY (2022) Hydroxymethylation-specific ligation-mediated single quantum dot-based nanosensors for sensitive detection of 5-hydroxymethylcytosine in cancer cells. Anal Chem 94:9785–9792. https://doi.org/10.1021/acs.analchem.2c01495

    Article  CAS  Google Scholar 

  40. Fan J, Ho L, Hobson P, Brookes J (2013) Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water Res 47:5153–5164. https://doi.org/10.1016/j.watres.2013.05.057

    Article  CAS  Google Scholar 

  41. Caldara M, Colleoni C, Guido E, Re V, Rosace G (2012) Development of a textile-optoelectronic pH meter based on hybrid xerogel doped with Methyl Red. Sens Actuators, B Chem 171–172:1013–1021. https://doi.org/10.1016/j.snb.2012.06.024

    Article  CAS  Google Scholar 

  42. Leménager G, Tusseau-Nenez S, Thiriet M, Coulon PE, Lahlil K, Larquet E, Gacoin T (2019) Nayf4 microstructure, beyond theirwell-shaped morphology. Nanomaterials 9:1–14. https://doi.org/10.3390/nano9111560

    Article  CAS  Google Scholar 

  43. Brady JB, Newton RM, Boardman SJ (1995) New uses for powder X-ray diffraction experiments in the undergraduate curriculum. J Geol Educ 43:466–470. https://doi.org/10.5408/0022-1368-43.5.466

    Article  Google Scholar 

  44. Sánchez Escribano V, Fernández López E, Panizza M, Resini C, Gallardo Amores JM, Busca G (2003) Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sci 5:1369–1376. https://doi.org/10.1016/j.solidstatesciences.2003.07.001

    Article  CAS  Google Scholar 

  45. Bakradze G, Jeurgens LPH, Mittemeijer EJ (2011) Valence-band and chemical-state analyses of Zr and O in thermally grown thin zirconium-oxide films: an XPS study. J Phys Chem C 115:19841–19848. https://doi.org/10.1021/jp206896m

    Article  CAS  Google Scholar 

  46. Zhang X, Yang S, Sun L, Luo A (2016) Surface-imprinted polymer coating l-cysteine-capped ZnS quantum dots for target protein specific recognition. J Mater Sci 51:6075–6085. https://doi.org/10.1007/s10853-016-9914-7

    Article  CAS  Google Scholar 

  47. Hong NH (2018) Introduction to nanomaterials: basic properties, synthesis, and characterization. Elsevier, Amsterdam, pp 1–19

    Google Scholar 

  48. Swarnalatha K, Muthuvinothini A (2015) Fluorescence sensing of melamine based on zirconia-coated CdS quantum dots. J Mater Sci 50:2318–2326. https://doi.org/10.1007/s10853-014-8795-x

    Article  CAS  Google Scholar 

  49. Witt W, Geers H, Aberle L (2003) Measurement of particle size and stability of nanoparticles in opaque suspensions and emulsions with photon cross correlation spectroscopy (PCCS). Part Syst Anal 1:1–4

    Google Scholar 

  50. Thambidurai M, Muthukumarasamy N, Agilan S, Sabari Arul N, Murugan N, Balasundaraprabhu R (2011) Structural and optical characterization of Ni-doped CdS quantum dots. J Mater Sci 46:3200–3206. https://doi.org/10.1007/s10853-010-5204-y

    Article  CAS  Google Scholar 

  51. Zhang L, Kartci A, Elwakil A, Bagci H, Salama KN (2021) Fractional-order inductor: design, simulation, and implementation. IEEE Access 9:73695–73702. https://doi.org/10.1109/ACCESS.2021.3077561

    Article  Google Scholar 

Download references

Acknowledgements

The XRD, FESEM, EDS, HRTEM, and EDX characterizations were made with the help of the Department of Chemistry, ICT-IOC, Bhubaneswar, India. The XPS characterization is done with the help of the Institute Instrumentation Centre (IIC), IITR, Roorkee, India. The authors gratefully acknowledged their help in the characterization of Zr QDs.

Author information

Authors and Affiliations

Authors

Contributions

A.N.A. and A.S. contributed to conception and design of the study. A.N.A. performed interpretation of data. A.N.A. and A.S. drafted the manuscript.

Corresponding author

Correspondence to Achyuta N. Acharya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or, personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 994 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, A.N., Sahoo, A. Facile synthesis and characterization of a new class of zirconium quantum dots (Zr QDs) for hydrogen peroxide sensing. J Mater Sci 58, 12976–12992 (2023). https://doi.org/10.1007/s10853-023-08812-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08812-w

Navigation