Skip to main content

Advertisement

Log in

B4C-SiC skeleton reinforced graphite composites with excellent mechanical properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

SiC-B4C ceramic skeleton reinforced graphite composites (MCMB/SiC-B4C) with extraordinary mechanical performance were fabricated by SPS method. The influence of sintering temperature and volume ratio of B4C/SiC on the microstructure and mechanical performance of the composites was studied. With the introduction of B4C in the composites, the B atom diffusion at the B4C/graphite interface can be activated when the sintering temperature exceeded 1700 °C, which can significantly improve the interfacial combination of the skeleton reinforcement and graphite matrix. Therefore, the relative density and mechanical properties of the composites can be improved. While the sintering temperature reached 1800 °C and the volume ratio of B4C/SiC was 4:6 (the total amount of ceramic reinforcement phase was 40 vol%), the composite exhibited the optimal comprehensive performance with bending strength of 202 MPa and fracture toughness of 3.29 MPa·m1/2. These values were 146% and 58% higher, respectively, than those of the composite without B4C. The developed graphite matrix composites are expected to be applied to extreme conditions such as high load, high temperature and oxidation environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Luedtke A (2004) Thermal management materials for high-performance applications. Adv Eng Mater 6:142–144. https://doi.org/10.1002/adem.200300552

    Article  CAS  Google Scholar 

  2. Lincoln Vogel F (1977) The electrical conductivity of graphite intercalated with superacid fluorides: experiments with antimony pentafluoride. J Mater Sci 12:982–986. https://doi.org/10.1007/BF00540981

    Article  Google Scholar 

  3. Tongay S, Schumann T, Hebard AF (2009) Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl Phys Lett 95:4–7. https://doi.org/10.1063/1.3268788

    Article  CAS  Google Scholar 

  4. Lenzen M (2008) Life cycle energy and greenhouse gas emissions of nuclear energy: a review. Energy Convers Manag 49:2178–2199. https://doi.org/10.1016/j.enconman.2008.01.033

    Article  CAS  Google Scholar 

  5. Zhang XY, Shi ZQ, Zhang X et al (2018) Three dimensional AlN skeleton-reinforced highly oriented graphite flake composites with excellent mechanical and thermophysical properties. Carbon 131:94–101. https://doi.org/10.1016/j.carbon.2018.01.091

    Article  CAS  Google Scholar 

  6. Wang HR, Xu LJ, Zhong YJ et al (2021) Mesocarbon microbead densified matrix graphite A3–3 for fuel elements in molten salt reactors. Nucl Eng Technol 53:1569–1579. https://doi.org/10.1016/j.net.2020.10.018

    Article  CAS  Google Scholar 

  7. Zhang XY, Zhu YY, Xie WQ et al (2022) Effect of carbon nanotube hybrid on the microstructure and properties of AlN skeleton-reinforced highly oriented graphite flake composites. Ceram Int 48:4276–4284. https://doi.org/10.1016/j.ceramint.2021.10.220

    Article  CAS  Google Scholar 

  8. Zhang XY, Xie WQ, Ge BZ et al (2020) Enhancing the mechanical and thermophysical properties of highly oriented graphite flake composites by formation of a uniform three dimensional tungsten carbide skeleton reinforcement. Compos Part A Appl Sci Manuf 131:105800. https://doi.org/10.1016/j.compositesa.2020.105800

    Article  CAS  Google Scholar 

  9. Dorri Moghadam A, Omrani E, Menezes PL, Rohatgi PK (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene—a review. Compos Part B Eng 77:402–420. https://doi.org/10.1016/jcompositesb.2015.03.014

    Article  CAS  Google Scholar 

  10. Sjogren T, Vomacka P, Svensson IL (2004) Comparison of mechanical properties in flake graphite and compacted graphite cast irons for piston rings. Int J Cast Met Res 17:65–71. https://doi.org/10.1179/136404604225017474

    Article  CAS  Google Scholar 

  11. Liu ZJ, Guo QG, Shi JL et al (2008) Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon 46:414–421. https://doi.org/10.1016/j.carbon.2007.11.050

    Article  CAS  Google Scholar 

  12. Han LY, Xiao CX, Song Q et al (2022) Nano-interface effect of graphene on carbon nanotube reinforced carbon/carbon composites. Carbon 190:422–429. https://doi.org/10.1016/j.carbon.2022.01.010

    Article  CAS  Google Scholar 

  13. Jiříčková A, Jankovský O, Sofer Z, Sedmidubský D (2022) Synthesis and applications of graphene oxide. Materials 15:920. https://doi.org/10.3390/ma15030920

    Article  CAS  Google Scholar 

  14. Wei ZY, Meng GH, Chen L et al (2022) Progress in ceramic materials and structure design toward advanced thermal barrier coatings. J Adv Ceram 11:985–1068. https://doi.org/10.1007/s40145-022-0581-7

    Article  CAS  Google Scholar 

  15. Zhang R, He XB, Chen HT, Qu X (2019) Effect of alloying element Zr on the microstructure and properties of graphite flake/Cu composites fabricated by vacuum hot pressing. J Alloys Compd 770:267–275. https://doi.org/10.1016/j.jallcom.2018.08.107

    Article  CAS  Google Scholar 

  16. Kumar P, Srivastava VK (2016) Tribological behaviour of C/C–SiC composites—a review. J Adv Ceram 5:1–12. https://doi.org/10.1007/s40145-015-0171-z

    Article  CAS  Google Scholar 

  17. Tang SF, Hu CL (2017) Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review. J Mater Sci Technol 33:117–130. https://doi.org/10.1016/j.jmst.2016.08.004

    Article  CAS  Google Scholar 

  18. Moshtaghioun BM, García DG, Domínguez-Rodríguez A (2016) High-temperature plastic deformation of spark plasma sintered boron carbide-based composites: the case study of B4C-SiC with/without graphite (g). J Eur Ceram Soc 36:1127–1134. https://doi.org/10.1016/j.jeurceramsoc.2015.12.016

    Article  CAS  Google Scholar 

  19. Songmene V, Balazinski M (1999) Machinability of graphitic metal matrix composites as a function of reinforcing particles. CIRP Ann 48:77–80. https://doi.org/10.1016/S0007-8506(07)63135-7

    Article  Google Scholar 

  20. Yang JH, Liu ZJ, Wang JZ et al (2014) The structure of MB2-MC-C (MZr, Hf, Ta) multi-phase ceramic coatings on graphite. J Eur Ceram Soc 34:2895–2904. https://doi.org/10.1016/j.jeurceramsoc.2014.03.027

    Article  CAS  Google Scholar 

  21. Wei CC, Liu ZL, Zhang ZY et al (2020) High toughness and R-curve behaviour of laminated SiC/graphite ceramics. Ceram Int 46:22973–22979. https://doi.org/10.1016/j.ceramint.2020.06.072

    Article  CAS  Google Scholar 

  22. Chen WW, Miyamoto Y (2014) Effect of graphite powders on formation of AlN ceramic-bonded carbon composites. Ceram Int 40:12597–12601. https://doi.org/10.1016/j.ceramint.2014.04.083

    Article  CAS  Google Scholar 

  23. Chen W, Miyamoto Y (2012) Fabrication of SiC ceramic bonded carbon and its joining with W. Trans JWRI 41:47–50. https://doi.org/10.18910/24868

  24. Ma HA, Yang ZM, Du J (2012) Influence of tungsten particles on the electrical properties of AlN ceramic. J Mater Sci Mater Electron 23:2181–2185. https://doi.org/10.1007/s10854-012-0747-0

    Article  CAS  Google Scholar 

  25. Yoshinari M, Masaharu N, Weiwu C (2009) Development of new composites; ceramic bonded carbon. Trans JWRI 38:57–61

    Google Scholar 

  26. Nakamura M, Tojo T, Naito M, Miyamoto Y (2012) Synthesis of ceramic bonded carbon using SiC-coated carbon particles and spark plasma sintering. Int J Appl Ceram Technol 9:1076–1084. https://doi.org/10.1111/j.1744-7402.2011.02708.x

    Article  CAS  Google Scholar 

  27. Wei ZL, Li K, Ge BZ et al (2021) Synthesis of nearly spherical AlN particles by an in-situ nitriding combustion route. J Adv Ceram 10:291–300. https://doi.org/10.1007/s40145-020-0440-3

    Article  CAS  Google Scholar 

  28. Zhang XY, Xie WQ, Sun L et al (2022) Continuous SiC skeleton reinforced highly oriented graphite flake composites with high strength and specific thermal conductivity. J Adv Ceram 11:403–413. https://doi.org/10.1007/s40145-021-0542-6

    Article  CAS  Google Scholar 

  29. Kim YW, Chun YS, Nishimura T et al (2007) High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Mater 55:727–736. https://doi.org/10.1016/j.actamat.2006.08.059

    Article  CAS  Google Scholar 

  30. Ribeiro S, Gênova LA, Ribeiro GC et al (2017) Effect of temperature and heating rate on the sintering performance of SiC–Al2O3–Dy2O3 and SiC–Al2O3–Yb2O3 systems. Ceram Int 43:16048–16054. https://doi.org/10.1016/j.ceramint.2017.09.118

    Article  CAS  Google Scholar 

  31. Choi HJ, Lee JG, Kim YW (2002) Oxidation behavior of liquid-phase sintered silicon carbide with aluminum nitride and rare-earth oxides (Re2O3, where Re = Y, Er, Yb). J Am Ceram Soc 85:2281–2286. https://doi.org/10.1111/j.1151-2916.2002.tb00448.x

    Article  CAS  Google Scholar 

  32. Sun G, Li YW, Hu QK et al (2009) Non-stoichiometric boron carbide synthesized in moderate temperature conditions. Mater Sci Pol 27:1033–1039

    CAS  Google Scholar 

  33. Shimizu Y, Takamizawa H, Inoue K et al (2011) Impact of carbon coimplantation on boron behavior in silicon: carbon-boron coclustering and suppression of boron diffusion. Appl Phys Lett 98:1–4. https://doi.org/10.1063/1.3597303

    Article  CAS  Google Scholar 

  34. Tanaka H, Yoshimura HN, Otani S et al (2000) Influence of silica and aluminum contents on sintering of and grain growth in 6H-SiC powders. J Am Ceram Soc 83:226–228. https://doi.org/10.1111/j.1151-2916.2000.tb01177.x

    Article  CAS  Google Scholar 

  35. Uchiyama Y, Abe Y, Bin ZG, Sano H (2006) Evaluation of oxidation behavior of the C-B4C-SiC composite through continuous measurement of mass change and gas concentration. Mater Sci Forum 510–511:402–405. https://doi.org/10.4028/www.scientific.net/msf.510-511.402

    Article  Google Scholar 

  36. Wei ZL, Xie WQ, Ge BZ, et al (2020) Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements. Compos Sci Technol 199:108304. https://doi.org/10.1016/j.compscitech.2020.108304

  37. Wei ZB, Jiang Y, Liu LM et al (2016) Phase relations in the Si–Al–Yb–O–C system. J Eur Ceram Soc 36:437–441. https://doi.org/10.1016/j.jeurceramsoc.2015.10.014

    Article  CAS  Google Scholar 

  38. Schwetz KA, Karduck P (1991) Investigations in the boron-carbon probe microanalysis. J Less-Common Met 75:1–11. https://doi.org/10.1016/0022-5088(91)90345-5

    Article  Google Scholar 

  39. Younes G, Ferro G, Jacquier C et al (2003) Comparison between Ar and N2 for high-temperature treatment of 4H-SiC substrates. Mater Sci Forum 433–436:119–122. https://doi.org/10.4028/www.scientific.net/msf.433-436.119

    Article  Google Scholar 

  40. Turkevich VZ, Stratiichuk DA, Turkevich DV (2016) Thermodynamic calculation of the phase diagram of the Si–C system up to 8 GPa. J Superhard Mater 38:145–147. https://doi.org/10.3103/S106345761602009X

    Article  Google Scholar 

  41. So SM, Choi WH, Kim KH et al (2020) Mechanical properties of B4C–SiC composites fabricated by hot-press sintering. Ceram Int 46:9575–9581. https://doi.org/10.1016/j.ceramint.2019.12.222

    Article  CAS  Google Scholar 

  42. Chen WW, Tojo T, Miyamoto Y (2012) SiC ceramic-bonded carbon fabricated with Si3N4 and carbon powders. Int J Appl Ceram Technol 9:313–321. https://doi.org/10.1111/j.1744-7402.2011.02677.x

    Article  CAS  Google Scholar 

  43. Evans AG, Johnson H (1975) The fracture stress and its dependence on slow crack growth. J Mater Sci 10:214–222. https://doi.org/10.1007/BF00540345

    Article  CAS  Google Scholar 

  44. Mahmoud KM (2007) Fracture strength for a high strength steel bridge cable wire with a surface crack. Theor Appl Fract Mech 48:152–160. https://doi.org/10.1016/j.tafmec.2007.05.006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92163112), the Natural Science Foundation of Shaanxi Province (2023-JCJQ-29), the Innovative Scientific Program of CNNC and the Opening Foundation of Shaanxi Key Laboratory of Aerospace Composites. We thank Dr. Chaowei Guo at School of Materials Science and Engineering of Xi’an Jiaotong University for his assistance with back scattered electron microscope.

Author information

Authors and Affiliations

Authors

Contributions

HL: formal analysis, writing—original draft. BZ: investigation, methodology. WX: data curation. ZW: software. KH: supervision; validation. HX: project administration, resources. ZS: conceptualization, supervision, writing—review & editing, funding acquisition.

Corresponding authors

Correspondence to Hongyan Xia or Zhongqi Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 255 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhang, B., Xie, W. et al. B4C-SiC skeleton reinforced graphite composites with excellent mechanical properties. J Mater Sci 58, 12221–12235 (2023). https://doi.org/10.1007/s10853-023-08788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08788-7

Navigation