Skip to main content

Advertisement

Log in

A review of magnesium corrosion in bio-applications: mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Materials with medical applications must show different properties and requirements, such as mimicking bones' structures and supporting bone tissue formation (osteogenesis) for implants. Magnesium (Mg) alloys as biodegradable materials have recently become outstanding biomaterials because of their desirable properties like being soluble within the body, having low density, exhibiting near-to-natural-bone Young module, and having after-corrosion-based products, which are not only biologically degradable but also non-toxic. In addition to the mentioned properties, the ability to stimulate new bone growth and more outstanding biocompatibility of Mg alloys than other ceramic-based, polymeric, and metallic biomaterials make Mg alloys one of the most favorable biomaterials for the next generation of orthopedic appliances and bioresorbable scaffolds. However, the rapid corrosion rate of Mg results in adverse outcomes such as hydrogen gas release (hydrogen built-up), mechanical integrity loss of the implant before the complete healing of the tissue (premature mechanical integrity disintegration), and weaker mechanical properties, which can limit their more comprehensive applications and restrict their ability in clinical bone restoration has become a challenge needing urgent action. The properties of Mg and its alloys, making them biomaterials and their applications, are introduced thoroughly in this study. At the same time, the most notable drawback of Mg, which is its rapid degradation rate, as well as Mg corrosion classification, its modeling approaches, and in vivo/in vitro testing methods, are fully described. Moreover, the relevant techniques to improve and boost its corrosion resistance, such as purification, adding alloying elements, surface coating, and Mg-based composites, are entirely presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data and code availability

Not Applicable

References

  1. Agrawal CM (1998) Reconstructing the human body using biomaterials. JOM 50(1):31–35

    Article  CAS  Google Scholar 

  2. Nasr Azadani M et al (2022) A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater 11(1):1–26

    Article  CAS  Google Scholar 

  3. Wang X (2013) Overview on biocompatibilities of implantable biomaterials. In: Lazinica R (ed) Advances in biomaterials science and biomedical applications in biomedicine, pp 111–155

  4. Farag MM (2023) Recent trends on biomaterials for tissue regeneration applications: review. J Mater Sci 58(2):527–558

    Article  CAS  Google Scholar 

  5. Vahidgolpayegani A et al (2017) Production methods and characterization of porous Mg and Mg alloys for biomedical applications, pp 25–82

  6. Liu S et al (2023) A review of the different fabrication techniques of porous Mg structures considering the effect of manufacturing parameters on corrosion rate and mechanical properties in the bio application. J Mater Sci 58:6556–6579

    Article  CAS  Google Scholar 

  7. Zhang L, Zhang J, Chen C-F (2014) Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications. Corros Sci 91:7–28

    Article  Google Scholar 

  8. Niinomi M (2002) Recent metallic materials for biomedical applications. Metall Mater Trans A 33(3):477–486

    Article  Google Scholar 

  9. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903

    Article  CAS  Google Scholar 

  10. Gu X-N, Zheng Y-F (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci Chin 4(2):111–115

    Article  Google Scholar 

  11. Hermawan H, Dubé D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6(5):1693–1697

    Article  CAS  Google Scholar 

  12. Kuroda D et al (2005) Development of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys for biomedical applications. Mater Trans 46:1532–1539

    Article  CAS  Google Scholar 

  13. Ahmadkhaniha D et al (2018) Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. J Mater Sci 53(24):16585–16597

    Article  CAS  Google Scholar 

  14. Miura K et al (2011) The bone tissue compatibility of a new Ti–Nb–Sn alloy with a low Young’s modulus. Acta Biomater 7:2320–2326

    Article  CAS  Google Scholar 

  15. Zhou Y-L, Niinomi M, Akahori T (2008) Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Mater Sci Eng A Struct Mater Prop Microstruct Process 483:153–156

    Article  Google Scholar 

  16. Ikeda M et al (2009) Isothermal aging behavior of beta titanium-manganese alloys. Mater Trans 50:2737–2743

    Article  CAS  Google Scholar 

  17. Ahmadi M et al (2022) Review of selective laser melting of magnesium alloys: advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J Market Res 19:1537–1562

    CAS  Google Scholar 

  18. Stanciu L, Díaz Amaya S (2022) Biodegradable materials for medical applications, pp 307–346

  19. Eivani AR et al (2021) Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy. J Market Res 12:1946–1957

    CAS  Google Scholar 

  20. Witte F et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5):63–72

    Article  CAS  Google Scholar 

  21. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6(5):1680–1692

    Article  CAS  Google Scholar 

  22. Radha R, Sreekanth D (2017) Insight of magnesium alloys and composites for orthopedic implant applications–a review. J Magnes Alloys 5(3):286–312

    Article  CAS  Google Scholar 

  23. Tsn SN, Park IS, Lee MH (2014) Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: prospects and challenges. Prog Mater Sci 60:1–71

    Article  Google Scholar 

  24. Nagels J, Stokdijk M, Rozing PM (2003) Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg 12(1):35–39

    Article  Google Scholar 

  25. Xu T et al (2019) Overview of advancement and development trend on magnesium alloy. J Magnes Alloys 7(3):536–544

    Article  CAS  Google Scholar 

  26. Hartwig A (2001) Role of magnesium in genomic stability. Mut Res Fundam Mol Mech Mutagen 475(1):113–121

    Article  CAS  Google Scholar 

  27. Okuma T (2001) Magnesium and bone strength. Nutrition 17(7–8):679–680

    Article  CAS  Google Scholar 

  28. Saris NE et al (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294(1):1–26

    Article  CAS  Google Scholar 

  29. Heimann RB (2021) Magnesium alloys for biomedical application: advanced corrosion control through surface coating. Surf Coat Technol 405:126521

    Article  CAS  Google Scholar 

  30. Mei D et al (2020) Selecting medium for corrosion testing of bioabsorbable magnesium and other metals–a critical review. Corros Sci 171:108722

    Article  CAS  Google Scholar 

  31. Thomaz TR et al (2010) The negative difference effect of magnesium and of the AZ91 alloy in chloride and stannate-containing solutions. Corros Sci 52:2235–2243

    Article  CAS  Google Scholar 

  32. Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomim Biomater Tissue Eng 12:25–39

    Article  Google Scholar 

  33. Li T et al (2021) Improved corrosion resistance of Mg alloy by a green phosphating: insights into pre-activation, temperature, and growth mechanism. J Mater Sci 56(1):828–843

    Article  CAS  Google Scholar 

  34. Amukarimi S, Mozafari M (2022) Biodegradable Magnesium biomaterials-road to the clinic. Bioengineering 9(3):107

    Article  CAS  Google Scholar 

  35. Bita A, Antoniac I, Ion C (2016) Potential use of Mg–Ca alloys for orthopedic applications. UPB Sci Bull Ser B Chem Mater Sci 78:173–184

    CAS  Google Scholar 

  36. Abdallah M et al (2020) Corrosion modeling of magnesium and its alloys for biomedical applications: review. Corros Mater Degrad 1:219–248

    Article  Google Scholar 

  37. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1(1):11–33

    Article  CAS  Google Scholar 

  38. Frankel G (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186

    Article  CAS  Google Scholar 

  39. Veleva L, Fernández-Olaya MG, Feliu S (2018) Initial stages of AZ31B magnesium alloy degradation in ringer’s solution: interpretation of EIS, mass loss, hydrogen evolution data and scanning electron microscopy observations. Metals 8(11):933

    Article  CAS  Google Scholar 

  40. Rong-Chang Z et al (2018) Chapter 3 Corrosion types of magnesium alloys. In: Tomasz T, Wojciech B, Mariusz K (eds) Magnesium alloys. IntechOpen, Rijeka

    Google Scholar 

  41. Winzer N et al (2005) A critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv Eng Mater 7(8):659–693

    Article  CAS  Google Scholar 

  42. Winzer N et al (2007) Stress corrosion cracking in magnesium alloys: characterization and prevention. JOM 59(8):49–53

    Article  CAS  Google Scholar 

  43. Abdalla M et al (2020) Corrosion modeling of magnesium and its alloys for biomedical applications. Corros Mater Degrad 1(2):11

    Article  Google Scholar 

  44. Yoon I-S et al (2019) Corrosion protection method and performance for prestressing strands. HERON 64(1/2):39

    Google Scholar 

  45. Duddu R (2014) Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method. Comput Mech 54:613–627

    Article  Google Scholar 

  46. Pidaparti R, Fang L, Palakal M (2008) Computational simulation of multi-pit corrosion process in materials. Comput Mater Sci 41:255–265

    Article  CAS  Google Scholar 

  47. di Caprio D et al (2011) Morphology of corroded surfaces: contribution of cellular automaton modelling. Corros Sci 53(1):418–425

    Article  Google Scholar 

  48. Caprio D et al (2016) 3D cellular automata simulations of intra and intergranular corrosion. Corros Sci 112:438–450

    Article  Google Scholar 

  49. Lemaitre J (1985) A continuous damage mechanics model for ductile fracture

  50. Amerinatanzi A et al (2018) Predicting the biodegradation of magnesium alloy implants: modeling, parameter identification, and validation. Bioengineering 5:105

    Article  CAS  Google Scholar 

  51. Bajger P et al (2017) Mathematical modelling of the degradation behaviour of biodegradable metals. Biomech Model Mechanobiol 16:227–238

    Article  CAS  Google Scholar 

  52. Scheiner S, Hellmich C (2007) Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corros Sci 49:319–346

    Article  CAS  Google Scholar 

  53. Ghanbarian B et al (2013) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77:1461

    Article  CAS  Google Scholar 

  54. Kirkland N, Birbilis N, Staiger M (2011) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8:925–936

    Article  Google Scholar 

  55. Hou L et al (2014) In vitro and in vivo studies on biodegradable magnesium alloy. Prog Nat Sci Mater Int 24(5):466–471

    Article  CAS  Google Scholar 

  56. Kirkland NT, Birbilis N, Staiger MP (2012) Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater 8(3):925–936

    Article  CAS  Google Scholar 

  57. Xu H et al (2020) Degradability and biocompatibility of magnesium-MAO: the consistency and contradiction between in-vitro and in-vivo outcomes. Arab J Chem 13(1):2795–2805

    Article  CAS  Google Scholar 

  58. Yfantis C et al (2006) In vitro corrosion behavior of new magnesium alloys for bone regeneration. In: Proceedings of the 4th WSEAS international conference on environment, ecosystems and development. Venice, Italy

  59. Song G (2007) Control of biodegradation of biocompatable magnesium alloys. Corros Sci 49(4):1696–1701

    Article  CAS  Google Scholar 

  60. Gu X et al (2012) In vitro and in vivo studies on a Mg–Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater 8:2360–2374

    Article  CAS  Google Scholar 

  61. Shi W et al (2021) A multi-dimensional non-uniform corrosion model for bioabsorbable metallic vascular stents. Acta Biomater 131:572–580

    Article  CAS  Google Scholar 

  62. Tkacz J et al (2016) Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy. Materials 9:925

    Article  Google Scholar 

  63. Feliu S Jr (2020) Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: brief review and challenges. Metals 10(6):775

    Article  CAS  Google Scholar 

  64. Esmaily M et al (2017) Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci 89:92–193

    Article  CAS  Google Scholar 

  65. Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater 7(7):563–586

    Article  CAS  Google Scholar 

  66. Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci 52(2):579–588

    Article  CAS  Google Scholar 

  67. De Oliveira LA et al (2021) Influence of anodization on the fatigue and corrosion-fatigue behaviors of the AZ31B magnesium alloy. Metals 11:1573

    Article  Google Scholar 

  68. Tan L et al (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513

    Article  CAS  Google Scholar 

  69. Bütev Öcal E et al (2019) Comparison of the short and long-term degradation behaviors of as-cast pure Mg, AZ91 and WE43 alloys. Mater Chem Phys 241:122350

    Article  Google Scholar 

  70. Eivani AR et al (2023) The effect of multi-pass friction stir processing on microstructure, mechanical properties, and corrosion behavior of WE43-nHA bio-composite. J Market Res 22:776–794

    CAS  Google Scholar 

  71. Pahlavani M et al (2021) The role of thickness on the fracture behavior of Al/Mg–Li/Al composite processed by cold roll bonding. Mater Sci Eng A 824:141851

    Article  CAS  Google Scholar 

  72. Yang J et al (2023) Microstructural understanding of the oxidation and inter-diffusion behavior of Cr-coated Alloy 800H in supercritical water. Corros Sci 211:110910

    Article  CAS  Google Scholar 

  73. Paital S, Dahotre N (2009) Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Mater Sci Eng R Rep Mat Sci Eng R 66:1–70

    Article  Google Scholar 

  74. Bandopadhyay S et al (2013) Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications. Mater Des 46:66–75

    Article  Google Scholar 

  75. Kosaba T, Muto I, Sugawara Y (2021) Effect of anodizing on galvanic corrosion resistance of Al coupled to Fe or type 430 stainless steel in diluted synthetic seawater. Corros Sci 179:109145

    Article  CAS  Google Scholar 

  76. Li JF et al (2006) Preparation and galvanic anodizing of a Mg–Li alloy. Mater Sci Eng A 433(1):233–240

    Article  Google Scholar 

  77. Hamouda MM, Chan Hee P, Cheol Sang K (2017) Chapter 8 surface modification of magnesium and its alloys using anodization for orthopedic implant application. In: Mahmood A (ed) Magnesium alloys. IntechOpen, Rijeka

    Google Scholar 

  78. Rane AV et al (2018) Chapter 5 - methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Mohan Bhagyaraj S et al (eds) Synthesis of inorganic nanomaterials. Woodhead Publishingn, New Delhi, pp 121–139

    Chapter  Google Scholar 

  79. Dorozhkin S (2014) Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater 10:2919–2934

    Article  CAS  Google Scholar 

  80. Augello C, Liu H (2015) Surface modification of magnesium by functional polymer coatings for neural applications. In: Surface modification of magnesium and its alloys for biomedical applications. Elsevier, pp 335–353

  81. Sanka RVSP et al (2019) Metal oxide based nanomaterials and their polymer nanocomposites, pp 123–144

  82. Surmeneva MA et al (2015) Ultrathin film coating of hydroxyapatite (HA) on a magnesium–calcium alloy using RF magnetron sputtering for bioimplant applications. Mater Lett 152:280–282

    Article  CAS  Google Scholar 

  83. García Rodríguez S et al (2021) Coating of Mg alloys and composites

  84. Krzak J et al (2020) Chapter 5 - sol–gel surface functionalization regardless of form and type of substrate. In: Hussain CM (ed) Handbook of nanomaterials for manufacturing applications. Elsevier, Amsterdam, pp 111–147

    Chapter  Google Scholar 

  85. Shadanbaz S, Dias G (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30

    Article  CAS  Google Scholar 

  86. Eivani AR et al (2021) The effect of addition of hardystonite on the strength, ductility and corrosion resistance of WE43 magnesium alloy. J Mater Res Technol 13:1855–1865

    Article  CAS  Google Scholar 

  87. Zheng B et al (2022) Correction: layered double hydroxide/hydroxyapatite-ciprofloxacin composite coating on AZ31 magnesium alloy: corrosion resistance, antibacterial, osteogenesis. J Mater Res 37(15):2483–2485

    Article  CAS  Google Scholar 

  88. Yazdimamaghani M et al (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl 71:1253–1266

    Article  CAS  Google Scholar 

  89. Li T-T et al (2020) Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J Mater Sci 55(15):6352–6374

    Article  CAS  Google Scholar 

  90. Song YW, Shan DY, Han E (2008) Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett 62:3276–3279

    Article  CAS  Google Scholar 

  91. Kalita SJ, Ferguson M (2006) Fabrication of 3-D porous Mg/Zn doped tricalcium phosphate bone-scaffolds via the fused deposition modelling. Am J Biochem Biotechnol 2(2):57–60

    Article  CAS  Google Scholar 

  92. Chen Z et al (2014) Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials 35:8553–8565

    Article  CAS  Google Scholar 

  93. Lin T et al (2021) Manufacturing of porous magnesium scaffolds for bone tissue engineering by 3D gel-printing. Mater Des 209:109948

    Article  CAS  Google Scholar 

  94. Xie J, Riley C, Chittur K (2002) Effect of albumin on brushite transformation to hydroxyapatite. J Biomed Mater Res 57:357–365

    Article  Google Scholar 

  95. Khairoun I et al (2002) In vitro characterization andin vivo properties of a carbonated apatite bone cement. J Biomed Mater Res 60:633–642

    Article  CAS  Google Scholar 

  96. Suzuki O et al (2008) Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem 15:305–313

    Article  CAS  Google Scholar 

  97. Habibovic P et al (2005) Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials 26(1):23–36

    Article  CAS  Google Scholar 

  98. Seyedmajidi S, Seyedmajidi M (2022) Fluorapatite: a review of synthesis, properties and medical applications vs hydroxyapatite. Iran J Mater Sci Eng 19

  99. Lin Z et al (2019) A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of magnesium alloy. Acta Biomater 99:495–513

    Article  CAS  Google Scholar 

  100. Xiong P et al (2018) Biomimetic Ca, Sr/P doped silk fibroin films on Mg-1Ca alloy with dramatic corrosion resistance and osteogenic activities. ACS Biomater Sci Eng 4:3163–3176

    Article  CAS  Google Scholar 

  101. Wang Y et al (2022) Effect of whisker alignment on microstructure, mechanical and thermal properties of Mg-SiCw/Cu composite fabricated by a combination of casting and severe plastic deformation (SPD). J Magnes Alloys 11:966–980

    Article  Google Scholar 

  102. Zhang Z et al (2023) Developing a Mg alloy with ultrahigh room temperature ductility via grain boundary segregation and activation of non-basal slips. Int J Plast 162:103548

    Article  CAS  Google Scholar 

  103. Zhang H et al (2022) Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders. Intermetallics 150:107683

    Article  CAS  Google Scholar 

  104. Fu Y et al (2023) Gradient structure of Ti-55531 with nano-ultrafine grains fabricated by simulation and suction casting. J Mater Eng Perform 32(7):3084–3093

    CAS  Google Scholar 

  105. Zhang B et al (2022) Microstructural origin and control mechanism of the mixed grain structure in Ni-based superalloys. J Alloy Compd 900:163515

    Article  CAS  Google Scholar 

  106. Kuwahara H et al (2001) Precipitation of magnesium apatite on pure magnesium surface during immersing in Hank’s solution. Mater Trans 42:1317–1321

    Article  CAS  Google Scholar 

  107. Li N, Zheng Y (2013) Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 29(6):489–502

    Article  CAS  Google Scholar 

  108. Tayyebi M et al (2021) Effects of strain accumulation and annealing on interfacial microstructure and grain structure (Mg and Al3Mg2 layers) of Al/Cu/Mg multilayered composite fabricated by ARB process. J Market Res 14:392–406

    CAS  Google Scholar 

  109. Esmaielzadeh O et al (2023) Investigation of mechanical properties and antibacterial behavior of WE43 magnesium-based nanocomposite. Mater Chem Phys 293:126864

    Article  CAS  Google Scholar 

  110. Liu S et al (2023) A review of the different fabrication techniques of porous Mg structures considering the effect of manufacturing parameters on corrosion rate and mechanical properties in the bio application. J Mater Sci 58(15):6556–6579

    Article  CAS  Google Scholar 

  111. Hu Y et al (2022) Preparation of medical Mg–Zn alloys and the effect of different zinc contents on the alloy. J Mater Sci Mater Med 33(1):9

    Article  CAS  Google Scholar 

  112. Zhang Y et al (2018) Effect of homogenization on microstructure characteristics, corrosion and biocompatibility of Mg–Zn–Mn–xCa Alloys. Materials 11:227

    Article  Google Scholar 

  113. Zhang S et al (2009) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640

    Article  Google Scholar 

  114. Esmaeilzadeh O et al (2022) An investigation of microstructural background for improved corrosion resistance of WE43 magnesium-based composites with ZnO and Cu/ZnO additions. J Alloy Compd 908:164437

    Article  CAS  Google Scholar 

  115. Xu L et al (2007) In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application. J Biomed Mater Res A 83(3):703–711

    Article  Google Scholar 

  116. Tejera-Centeno C, Rico R, Gallego S (2023) Multiplicity of Zn coordination sites at cubic spinel ferrites: magnetism and influence of the Zn d band. J Mater Sci 58(13):5658–5677

    Article  CAS  Google Scholar 

  117. Sun Y et al (2012) Preparation and characterization of a new biomedical Mg–Zn–Ca alloy. Mater Des 34:58–64

    Article  Google Scholar 

  118. Chen Y et al (2014) Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater 10(11):4561–4573

    Article  CAS  Google Scholar 

  119. Razi A et al (2022) High cycle fatigue behavior of bimetallic Al 7025/CP-Mg rods produced by rotary swaging. J Market Res 19:3321–3336

    CAS  Google Scholar 

  120. Wang Y et al (2022) Microstructural evolution, shielding effectiveness, and the ballistic response of Mg/Al7075/B4C/Pb composite produced by combination of coating and severe plastic deformation (SPD) processes. J Manuf Process 84:977–985

    Article  Google Scholar 

  121. Wen Z et al (2009) Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. J Alloys Compd 488:392–399

    Article  CAS  Google Scholar 

  122. Rahmatabadi D et al (2021) Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process. Proc Inst Mech Eng Part B J Eng Manuf 235:095440542199566

    Article  Google Scholar 

  123. Yarigarravesh M, Tayyebi M, Tayebi M (2022) Evaluation of whisker alignment and anisotropic mechanical properties of ZK60 alloy reinforced with SiCw during KOBO extrusion method. J Manuf Process 84:344–356

    Article  Google Scholar 

  124. Salvetr P, Novák P (2016) Porous magnesium alloys prepared by powder metallurgy. Mater Tehnol 50:917–922

    Article  Google Scholar 

  125. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39(20):6153–6171

    Article  CAS  Google Scholar 

  126. Zhang E et al (2010) Microstructure, mechanical properties and bio-corrosion properties of Mg–Si (–Ca, Zn) alloy for biomedical application. Acta Biomater 6(5):1756–1762

    Article  CAS  Google Scholar 

  127. Xie J et al (2021) Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J Magnes Alloys 9(1):41–56

    Article  CAS  Google Scholar 

  128. Bita A et al (2016) In vitro degradation and corrosion evaluation of Mg–Ca alloys for biomedical applications. J Optoelectron Adv Mater 18:394–398

    CAS  Google Scholar 

  129. Li Z et al (2008) The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29(10):1329–1344

    Article  CAS  Google Scholar 

  130. Luo K et al (2019) Effect of Y and Gd content on the microstructure and mechanical properties of Mg–Y–RE alloys. J Magnes Alloys 7(2):345–354

    Article  CAS  Google Scholar 

  131. Zhang P, Li Z (2023) Fatigue deformation mechanism of the Mg–Nd alloys. J Mater Sci 58(3):1315–1329

    Article  CAS  Google Scholar 

  132. Rahmatabadi D et al (2019) Investigation of mechanical properties, formability, and anisotropy of dual phase. Mater Res Express 6:096543

    Article  CAS  Google Scholar 

  133. Rahmatabadi D et al (2020) Production of Al/Mg–Li composite by the accumulative roll bonding process. J Market Res 9(4):7880–7886

    CAS  Google Scholar 

  134. Mehdizade M et al (2022) Microstructural basis for improved corrosion resistance and mechanical properties of fabricated ultra-fine grained Mg-Akermanite composites. Mater Chem Phys 292:126765

    Article  CAS  Google Scholar 

  135. Pahlavani M et al (2019) A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg–Li using RSM. Mater Res Express 6:076554

    Article  CAS  Google Scholar 

  136. Zhang P et al (2023) Effect of cutting parameters on the corrosion resistance of 7A04 aluminum alloy in high speed cutting. Vacuum 212:111968

    Article  CAS  Google Scholar 

  137. Vahidgolpayegani A et al (2017) Production methods and characterization of porous Mg and Mg alloys for biomedical applications. In: Wen C (ed) Metallic foam bone. Woodhead Publishing, New Delhi, pp 25–82

    Chapter  Google Scholar 

  138. Yang D-H et al (2010) Compressive properties of cellular Mg foams fabricated by melt-foaming method. Mater Sci Eng A Struct Mater Prop Microstruct Process Mater Sci Eng A Struct Mater 527:5405–5409

    Article  Google Scholar 

  139. Lee JW et al (2016) Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci 113(3):716–721

    Article  CAS  Google Scholar 

  140. Bairagi D, Mandal S (2022) A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants: current status, challenges, and future prospects. J Magnes Alloys 10(3):627–669

    Article  CAS  Google Scholar 

  141. Gutiérrez Púa LDC et al (2023) Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. J Mater Sci 58(9):3879–3908

    Article  Google Scholar 

  142. Wen J et al (2021) Improvement of in vitro degradation of magnesium oxychloride cement for bone repair by chitosan. J Mater Sci 56(1):706–717

    Article  CAS  Google Scholar 

  143. Saranya K et al (2020) Biocompatible gadolinium-coated magnesium alloy for biomedical applications. J Mater Sci 55(25):11582–11596

    Article  CAS  Google Scholar 

  144. Shao H et al (2020) Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing. J Mater Sci 55(18):7870–7882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Zh, G.H, M. Y and M. T contributed to Conceptualization, analysis, investigation; M. T, S.Zh contributed to writing original draft; M.T contributed to Writing—review and editing.

Corresponding authors

Correspondence to Song Zhao or Moslem Tayyebi.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The references of all the human participants, human data or human tissue were cited in this review

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Tayyebi, M., Mahdireza Yarigarravesh et al. A review of magnesium corrosion in bio-applications: mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate. J Mater Sci 58, 12158–12181 (2023). https://doi.org/10.1007/s10853-023-08782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08782-z

Navigation