Skip to main content
Log in

Improved corrosion resistance of Mg alloy by a green phosphating: insights into pre-activation, temperature, and growth mechanism

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poor corrosion resistance of magnesium alloys remains a major obstacle to their extensive application. Phosphate conversion coating (PCC) is one of the most direct and effective strategies to enhance the corrosion resistance of magnesium alloys. To overcome the environmental damage of traditional phosphating technology, a PCC free of fluorine, chromium and nitrite was prepared in the present work. The effects of surface pre-activation process and preparation temperature on the surface morphology and corrosion resistance of PCC on ZK60 magnesium alloy were investigated. Surface pre-activation could significantly reduce the ultimate grain size of phosphate. At 90 °C, the prepared PCC showed perfect morphology and corrosion resistance. To better understand the phosphating nucleation and growth process, the surface and cross-sectional morphologies of PCC prepared for different times were observed. The phase composition of the prepared PCC was detected to be Hureaulite (Mn5(PO4)2(PO3OH)2·4H2O) and the coating growth mechanism was suggested in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Atrens A, Song G-L, Liu M, Shi Z, Cao F, Dargusch MS (2015) Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 17:400–453

    CAS  Google Scholar 

  2. Liu H, Cao F, Song G-L, Zheng D, Shi Z, Dargusch MS, Atrens A (2019) Review of the atmospheric corrosion of magnesium alloys. J Mater Sci Technol 35:2003–2016

    Google Scholar 

  3. Li T, He Y, Wu J, Zhou J, Tang S, Yang Y, Wang X (2018) Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy. J Mater Sci 53:14075–14086. https://doi.org/10.1007/s10853-018-2626-4

    Article  CAS  Google Scholar 

  4. Yao Q-S, Zhang F, Song L, Zeng R-C, Cui L-Y, Li S-Q, Wang Z-L, Han E-H (2018) Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg–Al-layered double hydroxide on AZ31 magnesium alloy. J Alloys Comp 764:913–928

    CAS  Google Scholar 

  5. Wang BJ, Xu DK, Wang SD, Sheng LY, Zeng R-C, Han E-h (2019) Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg–Zn–Y-Zr alloy. Int J Fatigue 120:46–55

    Google Scholar 

  6. Soltan A, Dargusch MS, Shi Z, Gerrard D, Atrens A (2019) Understanding the corrosion behaviour of the magnesium alloys EV31A, WE43B, and ZE41A. Mater Corros 70:1527–1552

    CAS  Google Scholar 

  7. Johnston S, Shi Z, Dargusch MS, Atrens A (2016) Influence of surface condition on the corrosion of ultra-high-purity Mg alloy wire. Corros Sci 108:66–75

    CAS  Google Scholar 

  8. Xu YZ, Li JY, Qi MF, Gu JB, Zhang Y (2020) Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy. J Mater Sci 55:1231–1245. https://doi.org/10.1007/s10853-019-03978-8

    Article  CAS  Google Scholar 

  9. Liu Y, Wen JB, He JG, Li H (2020) Enhanced mechanical properties and corrosion resistance of biodegradable Mg–Zn–Zr–Gd alloy by Y microalloying. J Mater Sci 55:1813–1825. https://doi.org/10.1007/s10853-019-04026-1

    Article  CAS  Google Scholar 

  10. Argade GR, Panigrahi SK, Mishra RS (2020) Aging response on the stress corrosion cracking behavior of wrought precipitation-hardened magnesium alloy. J Mater Sci 55:1216–1230. https://doi.org/10.1007/s10853-019-03976-w

    Article  CAS  Google Scholar 

  11. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X (2018) Influence of albumin on in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. Mater Lett 217:227–230

    CAS  Google Scholar 

  12. Guo L, Wu W, Zhou Y, Zhang F, Zeng R, Zeng J (2018) Layered double hydroxide coatings on magnesium alloys: a review. J Mater Sci Technol 34:1455–1466

    Google Scholar 

  13. Makwana D, Bhingole PP (2018) Electrochemical and plasma surface modification of magnesium and its alloy: review. Mater Today Proc 5:18260–18267

    CAS  Google Scholar 

  14. Saji VS (2019) Organic conversion coatings for magnesium and its alloys. J Ind Eng Chem 75:20–37

    CAS  Google Scholar 

  15. Hoche H, Groß S, Oechsner M (2014) Development of new PVD coatings for magnesium alloys with improved corrosion properties. Surf Coat Technol 259:102–108

    CAS  Google Scholar 

  16. Li C-Y, Fan X-L, Zeng R-C, Cui L-Y, Li S-Q, Zhang F, He Q-K, Kannan MB, Jiang H-W, Chen D-C, Guan S-K (2019) Corrosion resistance of in situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA. J Mater Sci Technol 35:1088–1098

    Google Scholar 

  17. Cui X, Li Q, Li Y, Wang F, Jin G, Ding M (2008) Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy. Appl Surf Sci 255:2098–2103

    CAS  Google Scholar 

  18. Song Y, Shan D, Chen R, Zhang F, Han E-H (2009) A novel phosphate conversion film on Mg–8.8Li alloy. Surf Coat Technol 203:1107–1113

    CAS  Google Scholar 

  19. Zhang CY, Liao SJ, Yu BX, Lu XP, Chen XB, Zhang T, Wang FH (2019) Ratio of total acidity to pH value of coating bath: a new strategy towards phosphate conversion coatings with optimized corrosion resistance for magnesium alloys. Corros Sci 150:279–295

    CAS  Google Scholar 

  20. Maurya R, Siddiqui AR, Balani K (2018) An environment-friendly phosphate chemical conversion coating on novel Mg–9Li–7Al–1Sn and Mg–9Li–5Al–3Sn–1Zn alloys with remarkable corrosion protection. Appl Surf Sci 443:429–440

    CAS  Google Scholar 

  21. Jayaraj J, Rajesh KR, Amruth Raj S, Srinivasan A, Ananthakumar S, Dhaipule NGK, Kalpathy SK, Pillai UTS, Mudali UK (2019) Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique. J Alloys Comp 784:1162–1174

    CAS  Google Scholar 

  22. Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys—a critical review. J Alloys Comp 336:88–113

    CAS  Google Scholar 

  23. Cui X-j, Liu C-h, Yang R-s, Li M-t, Lin X-z, Gong M (2012) Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance. Trans Nonferrous Met Soc China 22:2713–2718

    CAS  Google Scholar 

  24. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30

    CAS  Google Scholar 

  25. Li Q, Xu S, Hu J, Zhang S, Zhong X, Yang X (2010) The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D. Electrochim Acta 55:887–894

    CAS  Google Scholar 

  26. Van Phuong N, Moon S, Chang D, Lee KH (2013) Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91. Appl Surf Sci 264:70–78

    Google Scholar 

  27. Umehara H, Takaya M, Itoh T (1999) Corrosion resistance of the die casting AZ91D magnesium alloys with paint finishing. Aluminium 75:634–638

    CAS  Google Scholar 

  28. Hafeez MA, Farooq A, Zang A, Saleem A, Deen KM (2020) Phosphate chemical conversion coatings for magnesium alloys: a review. J Coat Technol Res 17:827–849

    CAS  Google Scholar 

  29. Ke C, Song M-S, Zeng R-C, Qiu Y, Zhang Y, Zhang R-F, Liu R-L, Cole I, Birbilis N, Chen X-B (2019) Interfacial study of the formation mechanism of corrosion resistant strontium phosphate coatings upon Mg–3Al–4.3Ca–0.1Mn. Corros Sci 151:143–153

    CAS  Google Scholar 

  30. Cui X-j, Liu C-h, Yang R-s, Fu Q-s, Lin X-z, Gong M (2013) Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism. Corros Sci 76:474–485

    CAS  Google Scholar 

  31. Zai W, Su Y, Man HC, Lian J, Li G (2019) Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy. Appl Surf Sci 492:314–327

    Google Scholar 

  32. Jiang S, Cai S, Lin Y, Bao X, Ling R, Xie D, Sun J, Wei J, Xu G (2019) Effect of alkali/acid pretreatment on the topography and corrosion resistance of as-deposited CaP coating on magnesium alloys. J Alloys Comp 793:202–211

    CAS  Google Scholar 

  33. Zeng R-C, Zhang F, Lan Z-D, Cui H-Z, Han E-H (2014) Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corros Sci 88:452–459

    CAS  Google Scholar 

  34. Zaludin MAF, Zahid Jamal ZA, Derman MN, Kasmuin MZ (2019) Fabrication of calcium phosphate coating on pure magnesium substrate via simple chemical conversion coating: surface properties and corrosion performance evaluations. J Mater Res Technol 8:981–987

    CAS  Google Scholar 

  35. Zeng R-C, Hu Y, Zhang F, Huang Y-D, Wang Z-L, Li S-Q, Han E-H (2016) Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy. Trans Nonferrous Met Soc China 26:472–483

    CAS  Google Scholar 

  36. Azhaarudeen S, Faruck AAM, Nevosad A (2018) Tribological behaviour and wear mechanisms of manganese phosphate coatings under dry reciprocating sliding contact conditions. Tribol Int 122:189–199

    CAS  Google Scholar 

  37. Ernens D, Langedijk G, Smit P, de Rooij MB, Pasaribu HR, Schipper DJ (2018) Characterization of the adsorption mechanism of manganese phosphate conversion coating derived tribofilms. Tribol Lett 66:131

    CAS  Google Scholar 

  38. Chen X-B, Zhou X, Abbott TB, Easton MA, Birbilis N (2013) Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: insights into coating formation, growth and corrosion resistance. Surf Coat Technol 217:147–155

    CAS  Google Scholar 

  39. Zhou WQ, Tang W, Zhao Q, Wu SW, Han EH (2011) Influence of additive on structure and corrosion resistance of manganese phosphate film on AZ91 magnesium alloy. Mater Sci Forum 686:176–180

    CAS  Google Scholar 

  40. Fu L-H, Dong C-F, Li X-G, Han W (2016) Electrochemical behaviors of magnesium alloy with phosphate conversion coating in NaCl solutions. Rare Met 35:747–757

    CAS  Google Scholar 

  41. Van Phuong N, Moon S (2014) Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy. Mater Lett 122:341–344

    Google Scholar 

  42. Yang HY, Chen XB, Guo XW, Wu GH, Ding WJ, Birbilis N (2012) Coating pretreatment for Mg alloy AZ91D. Appl Surf Sci 258:5472–5481

    CAS  Google Scholar 

  43. Phuong NV, Lee KH, Chang D, Moon S (2013) Effects of Zn2 + concentration and pH on the zinc phosphate conversion coatings on AZ31 magnesium alloy. Corros Sci 74:314–322

    CAS  Google Scholar 

  44. Su Y, Guo Y, Huang Z, Zhang Z, Li G, Lian J, Ren L (2016) Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy. Surf Coat Technol 307:99–108

    CAS  Google Scholar 

  45. Zhou W, Shan D, Han E-H, Ke W (2008) Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corros Sci 50:329–337

    CAS  Google Scholar 

  46. Zhou WQ, Shan DY, Han EH, Ke W (2005) Phosphate conversion coating on diecast AZ91D and its corrosion resistance. Mater Sci Forum 488–489:819–822

    Google Scholar 

  47. Cui XJ, Liu CH, Yang RS, Lin XZ, Gong M (2012) Preparation and characterization of phosphate film for magnesium alloy AZ31. Phys Procedia 25:194–199

    CAS  Google Scholar 

  48. Cui XJ, Wang XC, Lu JF, Pan XQ, Li QG (2010) A chromium-free phosphate solution and process for magnesium alloy. China Patent 201010123677.6

  49. Zeng RC, Sun XX, Song YW, Zhang F, Li SQ, Cui HZ, Han EH (2013) Influence of solution temperature on corrosion resistance of Zn–Ca phosphate conversion coating on biomedical Mg–Li–Ca alloys. Trans Nonferrous Met Soc China 23:3293–3299

    CAS  Google Scholar 

  50. Fouladi M, Amadeh A (2013) Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochim Acta 106:1–12

    CAS  Google Scholar 

  51. Chen XB, Nisbet DR, Li RW, Smith PN, Abbott TB, Easton MA, Zhang DH, Birbilis N (2014) Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating. Acta Biomater 10:1463–1474

    CAS  Google Scholar 

  52. Ke C, Pohl K, Birbilis N, Chen XB (2014) Protective strontium phosphate coatings for magnesium biomaterials. Mater Sci Technol 30:521–526

    CAS  Google Scholar 

  53. Ke C, Wu Y, Qiu Y, Duan J, Birbilis N, Chen X-B (2016) Influence of surface chemistry on the formation of crystalline hydroxide coatings on Mg alloys in liquid water and steam systems. Corros Sci 113:145–159

    CAS  Google Scholar 

  54. Wolpers M, Angeli J (2001) Activation of galvanized steel surfaces before zinc phosphating—XPS and GDOES investigations. Appl Surf Sci 179:281–291

    CAS  Google Scholar 

  55. Doerre M, Hibbitts L, Patrick G, Akafuah N (2018) Advances in automotive conversion coatings during pretreatment of the body structure: a review. Coatings 8:405

    Google Scholar 

  56. Zhang C, Liu B, Yu B, Lu X, Wei Y, Zhang T, Mol JMC, Wang F (2019) Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy. Surf Coat Technol 359:414–425

    CAS  Google Scholar 

  57. Freeman DB (1986) Phosphating and metal pretreatment: a guide to modern processes and practice, 1st edn. Woodhead-Faulkner, Cambridge

    Google Scholar 

  58. Hadzima B, Pastorek F, Borko K, Fintová S, Kajánek D, Bagherifard S, Gholami-Kermanshahi M, Trško L, Pastorková J, Brezina J (2019) Effect of phosphating time on protection properties of hurealite coating: differences between ground and shot peened HSLA steel surface. Surf Coat Technol 375:608–620

    CAS  Google Scholar 

  59. Amirudin A, Thieny D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26:1–28

    CAS  Google Scholar 

  60. Olivier MG, Poelman M (2012) Use of electrochemical impedance spectroscopy (EIS) for the evaluation of electrocoatings performances. In: Shoja Razavi R (ed) Recent researches in corrosion evaluation and protection. InTech, Rijeka, pp 1–26

    Google Scholar 

  61. Shang W, Zhan X, Wen Y, Li Y, Zhang Z, Wu F, Wang C (2019) Deposition mechanism of electroless nickel plating of composite coatings on magnesium alloy. Chem Eng Sci 207:1299–1308

    CAS  Google Scholar 

  62. Rajabalizadeh Z, Seifzadeh D (2016) Strontium phosphate conversion coating as an economical and environmentally-friendly pretreatment for electroless plating on AM60B magnesium alloy. Surf Coat Technol 304:450–458

    CAS  Google Scholar 

  63. Hu R, Su Y, Liu H (2016) Deposition behaviour of nickel phosphorus coating on magnesium alloy in a weak corrosive electroless nickel plating bath. J Alloys Comp 658:555–560

    CAS  Google Scholar 

  64. Li CY, Feng XL, Fan XL, Yu XT, Yin ZZ, Konnan MB, Chen XB, Guan SK, Zhang J, Zeng RC (2019) Corrosion and wear resistance of micro-arc oxidation composite coatings on magnesium alloy AZ31-The Influence Of Inclusions Of Carbon Spheres. Adv Eng Mater 21:1900446

    CAS  Google Scholar 

  65. Yao QS, Li ZC, Qiu ZM, Zhang F, Chen XB, Chen DC, Guan SK, Zeng RC (2019) Corrosion resistance of Mg(OH)(2)/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane. Rare Met 38:629–641

    CAS  Google Scholar 

  66. Zou Y-H, Wang J, Cui L-Y, Zeng R-C, Wang Q-Z, Han Q-X, Qiu J, Chen X-B, Chen D-C, Guan S-K, Zheng Y-F (2019) Corrosion resistance and antibacterial activity of zinc-loaded montmorillonite coatings on biodegradable magnesium alloy AZ31. Acta Biomater 98:196–214

    CAS  Google Scholar 

  67. Ji X-J, Gao L, Liu J-C, Jiang R-Z, Sun F-Y, Cui L-Y, Li S-Q, Zhi K-Q, Zeng R-C, Wang Z-L (2019) Corrosion resistance and antibacterial activity of hydroxyapatite coating induced by ciprofloxacin-loaded polymeric multilayers on magnesium alloy. Prog Org Coat 135:465–474

    CAS  Google Scholar 

  68. Zhao Y, Zhang Z, Shi L, Zhang F, Li S, Zeng R (2019) Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys. Mater Lett 237:14–18

    CAS  Google Scholar 

  69. Li L-Y, Cui L-Y, Zeng R-C, Li S-Q, Chen X-B, Zheng Y, Kannan MB (2018) Advances in functionalized polymer coatings on biodegradable magnesium alloys—a review. Acta Biomater 79:23–36

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Key Research and Development Plan of China (Nos. 2017YFB0103904, 2016YFB0301105), Shandong Province Key Research and Development Plan (No. 2017CXGC0404), Natural Science Foundation of Shandong Province (Nos. ZR2017LEM002), Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0034), and Ji Nan Science & Technology Bureau (No. 2019GXRC030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Jixue Zhou.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Handling Editor: David Balloy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Wang, S., Liu, H. et al. Improved corrosion resistance of Mg alloy by a green phosphating: insights into pre-activation, temperature, and growth mechanism. J Mater Sci 56, 828–843 (2021). https://doi.org/10.1007/s10853-020-05288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05288-w

Navigation