Skip to main content
Log in

Characterization of dislocations at the emission site by emission microscopy in GaN p–n diodes

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The character of dislocations at the emission sites observed in p–n diodes on (0001) GaN by emission microscopy under reverse biasing is investigated. The dislocation is a c-type threading dislocation formed by the reaction of c+a and -a dislocations. The c-type threading dislocation is closed-core, screw type, and helical, formed by vacancy desorption with a 0.2 μm cavity approximately 2 μm beneath the surface. The band-edge photoluminescence under multiphoton excitation at the dislocation in the p layer is brighter than that of the surrounding non-defective area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Amano H, Baines Y, Beam E et al (2018) Topical Review The 2018 GaN power electronics roadmap. J Phys D Appl Phys 51:163001. https://doi.org/10.1088/1361-6463/aaaf9d

    Article  CAS  Google Scholar 

  2. Oka T (2019) Progress Review: recent development of vertical GaN power devices. Jpn J Appl Phys 58: SB0805–1–SB0805–12. doi:https://doi.org/10.7567/1347-4065/ab02e7

    Article  Google Scholar 

  3. Flack TJ, Pushpakaran BN, Bayne SB (2016) GaN technology for power electronic applications: a review. J Electron Mater 45:2673–2682. https://doi.org/10.1007/s11664-016-4435-3

    Article  CAS  Google Scholar 

  4. Powell AR, Leonard RT, Brady MF et al (2004) Large diameter 4H–SiC substrates for commercial power applications. Mater Sci Forum 457–460:41–46. https://doi.org/10.4028/www.scientific.net/MSF.457-460.41

    Article  Google Scholar 

  5. Dudley M, Zhang N, Zhang Y et al (2010) Characterization of 100 mm diameter 4H-silicon carbide crystals with extremely low basal plane dislocation density. Mater Sci Forum 645–648:291–294. https://doi.org/10.4028/www.scientific.net/MSF.645-648.291

    Article  CAS  Google Scholar 

  6. Kondo H, Takaba H, Yamada M et al (2014) Development of RAF quality 150mm 4H-SiC wafer. Mater Sci Forum 778–780:17–21. https://doi.org/10.4028/www.scientific.net/MSF.778-780.17

    Article  Google Scholar 

  7. Quast J, Hansen D, Loboda M et al (2015) High quality 150 mm 4H SiC wafers for power device production. Mater Sci Forum 821–823:56–59. https://doi.org/10.4028/www.scientific.net/MSF.821-823.56

    Article  Google Scholar 

  8. Ha S, Mieszkowski P, Skowronski M, Rowland LB (2002) Dislocation conversion in 4H silicon carbide epitaxy. J Cryst Growth 244:257–266. https://doi.org/10.1016/S0022-0248(02)01706-2

    Article  CAS  Google Scholar 

  9. Ohno T, Yamaguchi H, Kuroda S, Kojima K, Suzuki T, Arai K (2004) Direct observation of dislocations propagated from 4H-SiC substrate to epitaxial layer by X-ray topography. J Cryst Growth 260:209–216. https://doi.org/10.1016/j.jcrysgro.2003.08.065

    Article  CAS  Google Scholar 

  10. Chen W, Capano MA (2005) Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles. J Appl Phys 98:114907-1–114907-6. https://doi.org/10.1063/1.2137442

    Article  CAS  Google Scholar 

  11. Zhang X, Tsuchida H (2012) Conversion of basal plane dislocations to threading edge dislocations in 4H-SiC epilayers by high temperature annealing. J Appl Phys 111:123512. https://doi.org/10.1063/1.4729326

    Article  CAS  Google Scholar 

  12. Zhang Z, Sudarshan TS (2005) Basal plane dislocation-free epitaxy of silicon carbide. Appl Phys Lett 87:151913-1–151913-3. https://doi.org/10.1063/1.2093931

    Article  CAS  Google Scholar 

  13. Chung S, Wheeler V, Myers-Ward R, Eddy CR Jr, Gaskill DK, Wu P, Picard YN, Skowronski M (2011) Direct observation of basal-plane to threading-edge dislocation conversion in 4H-SiC epitaxy. J Appl Phys 109:094906-1–094906-5. https://doi.org/10.1063/1.3579447

    Article  CAS  Google Scholar 

  14. Stahlbush RE, VanMil BL, Myers-Ward RL, Lew KK, Gaskill DK, Eddy CR Jr (2009) Basal plane dislocation reduction in 4H-SiC epitaxy by growth interruptions. Appl Phys Lett 94:041916-1–041916-3. https://doi.org/10.1063/1.3070530

    Article  CAS  Google Scholar 

  15. Song H, Sudarshan TS (2013) Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H-SiC. J Cryst Growth 371:94–101. https://doi.org/10.1016/j.jcrysgro.2013.02.011

    Article  CAS  Google Scholar 

  16. Myers-Ward RL, VanMil BL, Stahlbush RE, Katz SL, McCrate JM, Kitt SA, Eddy CR, Gaskill DK (2009) Turning of Basal Plane Dislocations during Epitaxial Growth on 4° Off-Axis 4H-SiC. Mater Sci Forum 615–617:105–108. https://doi.org/10.4028/www.scientific.net/MSF.615-617.105

    Article  Google Scholar 

  17. Setera B, Christou A (2021) Threading dislocations in GaN high-voltage switches. Microelectron Reliab 124(114336):1–10. https://doi.org/10.1016/j.microrel.2021.114336

    Article  CAS  Google Scholar 

  18. Kachi T, Uesugi T (2013) Evaluation of GaN Substrate for Vertical GaN Power Device Applications. Sens Mater 25:219–227. https://doi.org/10.18494/SAM.2013.881

    Article  CAS  Google Scholar 

  19. Shiojima K, Suemitsu T, Ogura M (2001) Correlation between current–voltage characteristics and dislocations for n-GaN Schottky contacts. Appl Phys Lett 78:3636–3638. https://doi.org/10.1063/1.1370538

    Article  CAS  Google Scholar 

  20. Hsu JWP, Manfra MJ, Chu SNG, Chen CH, Pfeiffer LN, Molnar RJ (2001) Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy. Appl Phys Lett 78:3980–3982. https://doi.org/10.1063/1.1379789

    Article  CAS  Google Scholar 

  21. Hsu JWP, Manfra MJ, Lang DV, Richter S, Chu SNG, Sergent AM, Kleiman RN, Pfeiffer LN, Molnar RJ (2001) Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl Phys Lett 78:1685–1687. https://doi.org/10.1063/1.1356450

    Article  CAS  Google Scholar 

  22. Hsu JWP, Manfra MJ, Molnar RJ, Heying B, Speck JS (2002) Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates. Appl Phys Lett 81:79–81. https://doi.org/10.1063/1.1490147

    Article  CAS  Google Scholar 

  23. Simpkins BS, Yu ET, Waltereit P, Speck JS (2003) Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J Appl Phys 94:1448–1453. https://doi.org/10.1063/1.1586952

    Article  CAS  Google Scholar 

  24. Huang Y, Chen XD, Fung S, Beling CD, Ling CC (2003) Experimental study and modeling of the influence of screw dislocations on the performance of Au/n-GaN Schottky diodes. J Appl Phys 94:5771–5775. https://doi.org/10.1063/1.1615705

    Article  CAS  Google Scholar 

  25. Moore JC, Ortiz JE, Xie J, Morkoç H, Baski AA (2007) Study of leakage defects on GaN films by conductive atomic force microscopy. J Phys Conf Ser 61:90–94. https://doi.org/10.1088/1742-6596/61/1/019

    Article  CAS  Google Scholar 

  26. Yokoyama T, Kamimura Y, Edagawa K, Yonenaga I (2013) Local current conduction due to edge dislocations in deformed GaN studied by scanning spreading resistance microscopy. Eur Phys J Appl Phys 61: 10102-p1–10102-p4.https://doi.org/10.1051/epjap/2012120318

    Article  Google Scholar 

  27. Kim B, Moon D, Joo K, Oh S, Lee YK, Park Y, Nanishi Y, Yoon E (2014) Investigation of leakage current paths in n-GaN by conductive atomic force microscopy. Appl Phys Lett 104:102101-1–102101-4. https://doi.org/10.1063/1.4868127

    Article  CAS  Google Scholar 

  28. Besendörfer S, Meissner E, Lesnik A, Friedrich J, Dadgar A, Erlbacher T (2019) Methodology for the investigation of threading dislocations as a source of vertical leakage in AlGaN/GaN-HEMT heterostructures for power devices. J Appl Phys 125:095704-1–095704-8. https://doi.org/10.1063/1.5065442

    Article  CAS  Google Scholar 

  29. Usami S, Ando Y, Tanaka A, et al (2018) Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl Phys Lett 112: 182106-1–182106-4. doi:https://doi.org/10.1063/1.5024704

    Article  Google Scholar 

  30. Usami S, Tanaka A, Fukushima H, Ando Y, Deki M, Nitta S, Honda Y, Amano H (2019) Correlation between nanopipes formed from screw dislocations during homoepitaxial growth by metal-organic vapor-phase epitaxy and reverse leakage current in vertical p–n diodes on a free-standing GaN substrates. Jpn. J. Appl. Phys. 58: SCCB24–1– SCCB24–10. doi: https://doi.org/10.7567/1347-4065/ab1250

  31. Narita T, Kanechika M, Kojima J et al (2022) Identification of type of threading dislocation causing reverse leakage in GaN p-n junctions after continuous forward current stress. Sci Rep 12:1458. https://doi.org/10.1038/s41598-022-05416-3

    Article  CAS  Google Scholar 

  32. Rackauskas B, Dalcanale S, Uren MJ, Kachi T, Kuball M (2018) Leakage mechanisms in GaN-on-GaN vertical pn diodes. Appl Phys Lett 112:233501-1–233501-4. https://doi.org/10.1063/1.5033436

    Article  CAS  Google Scholar 

  33. Yi W, Kumar A, Uzuhashi J et al (2020) Mg diffusion and activation along threading dislocations in GaN. Appl Phys Lett 116:242103-1–242103-5. https://doi.org/10.1063/5.0009596

    Article  CAS  Google Scholar 

  34. Sakurai H, Omori M, Yamada S et al (2019) Highly effective activation of Mg-implanted p-type GaN by ultra-high-pressure annealing. Appl Phys Lett 115:142104-1–142104-5. https://doi.org/10.1063/1.5116866

    Article  CAS  Google Scholar 

  35. Narita T, Yoshida H, Tomita K, et al (2020) Progress on and challenges of p-type formation for GaN power devices. J. Appl. Phys. 128: 090901–1– 090901–13. doi: https://doi.org/10.1063/5.0022198

  36. Tanikawa T, Ohnishi K, Kanoh M, Mukai T, Matsuoka T (2018) Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence. Appl Phys Express 11:031004-1–031004-4. https://doi.org/10.7567/apex.11.031004

    Article  CAS  Google Scholar 

  37. Yao Y, Ishikawa Y, Sugawara Y, Yokoe D, Sudo M, Okada N, Tadatomo K (2016) Revelation of dislocations in HVPE GaN single crystal by KOH etching with Na2O2 additive and cathodoluminescence mapping. Superlattices Microstruct 99:83–87. https://doi.org/10.1016/j.spmi.2016.05.002

    Article  CAS  Google Scholar 

  38. Tanaka M, Terauchi M, Kaneyama T (1991) Identification of Lattice Defects by Convergent-Beam Electron Diffraction. J Electron Microsc 40:211–220. https://doi.org/10.1093/oxfordjournals.jmicro.a050898

    Article  Google Scholar 

  39. Tanaka M, Terauchi M, Kaneyama T (1988) Convergent-beam electron diffraction II, JEOL-Maruzen, Tokyo, p. 160

    Google Scholar 

  40. Cherns D, Morniroli JP (1994) Analysis of partial and stair-rod dislocations by large angle convergent beam electron diffraction. Ultramicroscopy 53:167–180. https://doi.org/10.1016/0304-3991(94)90007-8

    Article  CAS  Google Scholar 

  41. Sugawara Y, Nakamori M, Yao Y et al (2012) Transmission Electron Microscopy Analysis of a Threading Dislocation with c+a Burgers Vector in 4H-SiC. Appl Phys Express 5:081301-1–081301-3. https://doi.org/10.1143/apex.5.081301

    Article  Google Scholar 

  42. Yao Y, Sugawara Y, Yokoe D et al (2020) Correlation between structural properties and nonradiative recombination behaviors of threading dislocations in freestanding GaN substrates grown by hydride vapor phase epitaxy. Cryst Eng Comm 48:8299–8312. https://doi.org/10.1039/d0ce01344g

    Article  CAS  Google Scholar 

  43. Meneghini M, Trivellin N, Pavesi M, Manfredi M, Zehnder U, Hahn B, Meneghesso G, Zanoni E (2009) Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes. Appl Phys Lett 95:173507-1–173507-3. https://doi.org/10.1063/1.3257368

    Article  CAS  Google Scholar 

  44. Anderson PM, Hirth P, Lothe J (2017) Theory of Dislocations, 3rd edn. Cambridge Univ. Press, Cambridge, pp 480–486

    Google Scholar 

  45. Horibuchi K, Yamaguchi S, Kimoto Y, Nishikawa K, Kachi T (2016) Formation of helical dislocations in ammonothermal GaN substrate by heat treatment. Semicond Sci Technol 31:34002. https://doi.org/10.1088/0268-1242/31/3/034002

    Article  CAS  Google Scholar 

  46. Nakano T, Harashima Y, Chokawa K et al (2020) Screw dislocation that converts p-type GaN to n-type: Microscopic study on Mg condensation and leakage current in p–n diodes. Appl Phys Lett 117:012105-1–012105-5. https://doi.org/10.1063/5.0010664

    Article  CAS  Google Scholar 

  47. Shiraishi K (2021) Atomic and electronic structures of the complex of Mg and screw dislocations in GaN. Vid Proc Adv Mater 2: 2021-0176 1–2021–0176-2. doi:https://doi.org/10.5185/vpoam.2021.0176

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by Japan Society for the Promotion of Science KAKENHI (Grant No. 20K05176). The authors are deeply grateful to Dr. S. Kobayashi for the insightful discussion on the contrast in the STEM images.

Author information

Authors and Affiliations

Authors

Contributions

YI: Conceptualization (lead); writing—original draft (lead); data curation (equal); investigation (equal); writing—review and editing (equal); funding acquisition (equal). YS: Investigation (equal); data curation (equal); writing—review and editing (equal). DY: Investigation (equal); writing—review and editing (equal). KS: Investigation (equal); writing—review and editing (equal). YY: Writing—review and editing (equal). KW: Investigation (equal); resources(equal); writing—review and editing (equal). TO: Conceptualization (equal); resources (lead); investigation (equal); writing—review and editing (equal); funding acquisition (lead).

Corresponding author

Correspondence to Yukari Ishikawa.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Ethical approval

Not applicable.

Supplementary information

Supplementary video shows MPPL images of backside and surface of the same area.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 2974 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, Y., Sugawara, Y., Yokoe, D. et al. Characterization of dislocations at the emission site by emission microscopy in GaN p–n diodes. J Mater Sci 58, 9221–9232 (2023). https://doi.org/10.1007/s10853-023-08596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08596-z

Navigation