Skip to main content
Log in

Self-healing boron-doped Sb2Se3 thermoelectric materials prepared using liquid metallic Ga–Sn alloys

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inorganic thermoelectric materials are typically brittle and unrecyclable. Among these inorganic thermoelectric materials, antimony selenide (Sb2Se3) is a promising material for preparing topological insulators and photovoltaic devices. Sb2Se3 has a large Seebeck coefficient and extremely low electrical conductivity. To apply Sb2Se3 as a thermoelectric material, its electrical conductivity must be improved, and self-healing must be realized. In this study, we fabricated self-healing thermoelectric composites using liquid metals from Ga–Sn and Sb2Se3 thermoelectric materials. Sb2Se3 nanowires and nanosheets were fabricated through hydrothermal reactions. To improve the thermoelectric performance, the Sb2Se3 nanowire and nanosheet samples were doped with elemental boron. B-doping enhanced both carrier concentration and the carrier mobility, leading to improved electrical conductivity and Seebeck coefficient. The composite material with the highest thermoelectric performance was identified by adjusting the ratio of Sb2Se3 nanowires to nanosheets. Subsequently, a liquid metal alloy Ga–Sn was prepared to achieve a melting point of 166 °C. Furthermore, a Ga–Sn and Sb2Se3 hybrid composite with a weight ratio of 5:5 was prepared through hot pressing at 130 °C (temperature lower than the melting point). The fabricated composite was cut into two pieces and heated to approximately 130 °C to induce self-healing. The cuts self-healed successfully, albeit with a certain loss of the Ga–Sn alloy. The electrical conductivity of the self-healed composites decreased slightly owing to the presence of voids and losses in the Ga–Sn liquid metal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hong M, Chen Z-G, Zou J (2018) Fundamental and progress of Bi2Te3-based thermoelectric materials. Chin Phys B 27:048403

    Article  Google Scholar 

  2. Scheele M, Oeschler N, Meier K, Kornowski A, Klinke C, Weller H (2009) Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv Funct Mater 19:3476–3483

    Article  CAS  Google Scholar 

  3. Mamur H, Bhuiyan M, Korkmaz F, Nil M (2018) A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew Sust Energ Rev 82:4159–4169

    Article  CAS  Google Scholar 

  4. Yang J, Cao J, Han J, Xiong Y, Luo L, Dan X et al (2022) Stretchable multifunctional self-powered systems with Cu-EGaIn liquid metal electrodes. Nano Energy 101:107582

    Article  CAS  Google Scholar 

  5. Zhu P, Imai Y, Isoda Y, Shinohara Y, Jia X, Zou G (2005) Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3. J Phys Condens Matter 17:7319

    Article  CAS  Google Scholar 

  6. Das D, Malik K, Deb A, Dhara S, Bandyopadhyay S, Banerjee A (2015) Defect induced structural and thermoelectric properties of Sb2Te3 alloy. J Appl Phys 118:045102

    Article  Google Scholar 

  7. Wang X-Y, Wang H-J, Xiang B, Fu L-W, Zhu H, Chai D et al (2018) Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl Mater Interfaces 10:23277–23284

    Article  CAS  Google Scholar 

  8. Hu H, Xia K, Wang Y, Fu C, Zhu T, Zhao X (2021) Fast synthesis and improved electrical stability in n-type Ag2Te thermoelectric materials. J Mater Sci Technol 91:241–250

    Article  CAS  Google Scholar 

  9. Zhu T, Bai H, Zhang J, Tan G, Yan Y, Liu W et al (2020) Realizing high thermoelectric performance in Sb-doped Ag2Te compounds with a low-temperature monoclinic structure. ACS Appl Mater Interfaces 12:39425–39433

    Article  CAS  Google Scholar 

  10. Tiekink ER (2012) Therapeutic potential of selenium and tellurium compounds: opportunities yet unrealized. Dalton Trans 41:6390–6395

    Article  CAS  Google Scholar 

  11. Guin SN, Chatterjee A, Negi DS, Datta R, Biswas K (2013) High thermoelectric performance in tellurium free p-type AgSbSe2. Energy Environ Sci 6:2603–2608

    Article  CAS  Google Scholar 

  12. Shi Y, Sturm C, Kleinke H (2019) Chalcogenides as thermoelectric materials. J Solid State Chem 270:273–279

    Article  CAS  Google Scholar 

  13. Zhao T, Zhu H, Zhang B, Zheng S, Li N, Wang G et al (2021) High thermoelectric performance of tellurium-free n-type AgBi1-xSbxSe2 with stable cubic structure enabled by entropy engineering. Acta Mater 220:117291

    Article  CAS  Google Scholar 

  14. Yang Y-X, Wu Y-H, Zhang Q, Cao G-S, Zhu T-J, Zhao X-B (2020) Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met 39:887–894

    Article  CAS  Google Scholar 

  15. Zhang L, Shang H, Huang D, Xie B, Zou Q, Gao Z et al (2022) N-type flexible Bi2Se3 nanosheets/SWCNTs composite films with improved thermoelectric performance for low-grade waste-heat harvesting. Nano Energy 104:107907

    Article  CAS  Google Scholar 

  16. Kim M, Park D, Kim J (2021) Enhancement of Bi2O2Se thermoelectric power factor via Nb doping. J Alloys Compd 851:156905

    Article  CAS  Google Scholar 

  17. Tan X, Liu Y, Liu R, Zhou Z, Liu C, Lan JL et al (2019) Synergistical enhancement of thermoelectric properties in n-Type Bi2O2Se by carrier engineering and hierarchical microstructure. Adv Energy Mater 9:1900354

    Article  Google Scholar 

  18. Yang F, Wu J, Suwardi A, Zhao Y, Liang B, Jiang J et al (2021) Gate-Tunable polar optical phonon to Piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv Mater 33:2004786

    Article  CAS  Google Scholar 

  19. Zheng Z-h, Wang T, Jabar B, Ao D-w, Li F, Chen Y-x et al (2021) Enhanced thermoelectric performance in n-Type Bi2O2Se by an exquisite grain boundary engineering approach. ACS Appl Energy Mater 4:10290–10297

    Article  CAS  Google Scholar 

  20. Qin Y, Yang L, Wei J, Yang S, Zhang M, Wang X et al (2020) Doping effect on Cu2Se thermoelectric performance: a review. Materials 13:5704

    Article  CAS  Google Scholar 

  21. Fan P, Huang X-l, Chen T-b, Li F, Chen Y-x, Jabar B et al (2021) α-Cu2Se thermoelectric thin films prepared by copper sputtering into selenium precursor layers. Chem Eng J 410:128444

    Article  CAS  Google Scholar 

  22. Choo S, Ejaz F, Ju H, Kim F, Lee J, Yang SE et al (2021) Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nat Commun 12:1–11

    Article  Google Scholar 

  23. Burton MR, Mehraban S, Beynon D, McGettrick J, Watson T, Lavery NP et al (2019) 3D printed SnSe thermoelectric generators with high figure of merit. Adv Energy Mater 9:1900201

    Article  Google Scholar 

  24. Zhang J, Zhang T, Zhang H, Wang Z, Li C, Wang Z et al (2020) Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv Mater 32:2002702

    Article  CAS  Google Scholar 

  25. Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y et al (2020) A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol Energy 201:227–246

    Article  CAS  Google Scholar 

  26. Chen S, Liu T, Zheng Z, Ishaq M, Liang G, Fan P et al (2022) Recent progress and perspectives on Sb2Se3-based photocathodes for solar hydrogen production via photoelectrochemical water splitting. J Energ Chem 67:508–523

    Article  CAS  Google Scholar 

  27. Fan P, Chen G-J, Chen S, Zheng Z-H, Azam M, Ahmad N et al (2021) Quasi-vertically oriented Sb2Se3 thin-film solar cells with open-circuit voltage exceeding 500 mV prepared via close-space sublimation and selenization. ACS Appl Mater Interfaces 13:46671–46680

    Article  CAS  Google Scholar 

  28. Wang J, Rehman SU, Xu Y, Zuo B, Cheng H, Guo L et al (2022) Two-dimensional antimony selenide (Sb2Se3) nanosheets prepared by hydrothermal method for visible-light photodetectors. Sol Energy 233:213–220

    Article  CAS  Google Scholar 

  29. Zhou Y, Feng W, Qian X, Yu L, Han X, Fan G et al (2019) Construction of 2D antimony (III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Appl Mater Interfaces 11:19712–19723

    Article  CAS  Google Scholar 

  30. Ma Z, Chai S, Feng Q, Li L, Li X, Huang L et al (2019) Chemical vapor deposition growth of high crystallinity Sb2Se3 nanowire with strong anisotropy for near-infrared photodetectors. Small 15:1805307

    Article  Google Scholar 

  31. Zhou H, Feng M, Feng M, Gong X, Zhang D, Zhou Y et al (2020) Gradient doping of sulfur in Sb2Se3 nanowire arrays as photoelectrochemical photocathode with a 2% half-cell solar-to-hydrogen conversion efficiency. Appl Phys Lett 116:113902

    Article  Google Scholar 

  32. Duan Z, Liang X, Feng Y, Ma H, Liang B, Wang Y et al (2022) Sb2Se3 Thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv Mater 34:2202969

    Article  CAS  Google Scholar 

  33. Kee S, Haque MA, Corzo D, Alshareef HN, Baran D (2019) Self-healing and stretchable 3D-printed organic thermoelectrics. Adv Funct Mater 29:1905426

    Article  CAS  Google Scholar 

  34. Ataei S, Khorasani SN, Neisiany RE (2019) Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Prog Org Coat 129:77–95

    Article  CAS  Google Scholar 

  35. Wang S, Urban MW (2020) Self-healing polymers. Nat Rev Mater 5:562–583

    Article  CAS  Google Scholar 

  36. Li CH, Zuo JL (2020) Self-healing polymers based on coordination bonds. Adv Mater 32:1903762

    CAS  Google Scholar 

  37. Wang Z, Gangarapu S, Escorihuela J, Fei G, Zuilhof H, Xia H (2019) Dynamic covalent urea bonds and their potential for development of self-healing polymer materials. J Mater Chem A 7:15933–15943

    Article  CAS  Google Scholar 

  38. Du X, Jin L, Deng S, Zhou M, Du Z, Cheng X et al (2021) Recyclable, self-healing, and flame-retardant solid–solid phase change materials based on thermally reversible cross-links for sustainable thermal energy storage. ACS Appl Mater Interfaces 13:42991–43001

    Article  CAS  Google Scholar 

  39. Tutika R, Haque A, Bartlett MD (2021) Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Commun Mater 2:1–8

    Article  Google Scholar 

  40. Markvicka EJ, Bartlett MD, Huang X, Majidi C (2018) An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat Mater 17:618–624

    Article  CAS  Google Scholar 

  41. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C (2018) EGaIn–metal interfacing for liquid metal circuitry and microelectronics integration. Adv Mater Interfaces 5:1701596

    Article  Google Scholar 

  42. Malakooti MH, Kazem N, Yan J, Pan C, Markvicka EJ, Matyjaszewski K, Majidi C (2019) Liquid metal supercooling for low-temperature thermoelectric wearables. Adv Funct Mater 29:1906098

    Article  CAS  Google Scholar 

  43. Chen B, Kruse M, Xu B, Tutika R, Zheng W, Bartlett MD, Wu Y, Claussen JC (2019) Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale 11:5222–5230

    Article  CAS  Google Scholar 

  44. Kim M, Park D, Kim J (2021) Synergistically enhanced thermoelectric performance by optimizing the composite ratio between hydrothermal Sb 2 Se 3 and self-assembled β-Cu 2 Se nanowires. CrystEngComm 23:2880–2888

    Article  CAS  Google Scholar 

  45. Zhang L, Wu K, Yu J, Yu Y, Wei Y (2021) Sb2Se3 films fabricated by thermal evaporation and post annealing. Vacuum 183:109840

    Article  CAS  Google Scholar 

  46. Venkidu L, Jain Ruth DE, Veera Gajendra Babu M, Esther Rubavathi P, Dhayanithi D, Giridharan NV, Sundarakannan B (2022) Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics. J Mater Sci Mater Electron 33:25006–25024

    Article  CAS  Google Scholar 

  47. Kumar A, Kumar V, Romeo A, Wiemer C, Mariotto G (2021) Raman spectroscopy and In situ XRD probing of the thermal decomposition of Sb2Se3 thin films. J Phys Chem C 125:19858–19865

    Article  CAS  Google Scholar 

  48. Lee Y, He G, Akey AJ, Si R (2011) Flytzani-Stephanopoulos M Herman IP Raman analysis of mode softening in nanoparticle CeO2− δ and Au-CeO2− δ during CO oxidation. J Am Chem Soc 133:12952–12955

    Article  CAS  Google Scholar 

  49. Feng B, Zhang J, Zhong Q, Li W, Li S, Li H et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Development (No. RS-2023-00244347) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy and also supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2021-2020-0-01655) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

Author information

Authors and Affiliations

Authors

Contributions

MK performed conceptualization, investigation, writing—original draft, data curation, formal analysis, and methodology. DP did investigation, data curation, and formal analysis. Prof. JK done supervision and project administration.

Corresponding author

Correspondence to Jooheon Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data and Code Availability

Not Applicable.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 301 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Park, D. & Kim, J. Self-healing boron-doped Sb2Se3 thermoelectric materials prepared using liquid metallic Ga–Sn alloys. J Mater Sci 58, 9251–9263 (2023). https://doi.org/10.1007/s10853-023-08593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08593-2

Navigation