Skip to main content

Advertisement

Log in

Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, metal foams have gained a lot of attention due to their distinctive physical, mechanical properties, and unique applications. Here, we fabricate magnesium base foam using viscose rayon fibers (VRFs) as a source of hydrogen by casting process at atmospheric pressure via the Gasar method. The chemical composition, pyrolysis of VRFs, and structure of magnesium foams are investigated in this study. By changing the amount of foaming agent from 0.4 to 2.2 wt%, the porosity rate changes from 10 to 52%. As the amount of foaming agent rises, the percentage of porosity first increases to a maximum and then remains almost constant, which can be due to the solubility of hydrogen in the magnesium melt. The highest obtained porosity is about 52% using 1.41 wt% of the foaming agent. The average diameter of the pores (in the range of 1.01–1.06 mm) shows no considerable change when the foaming agent amount is increased. As a result of this study, VRFs may serve as an effective foaming agent in fabricating magnesium foams to be used in load-bearing, weight-saving, and impact-absorbing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The authors have presented all the data required for evaluating the conclusions in the paper, and they may provide additional data to support their arguments.

References

  1. Liu X, Li Y, Wang J, He Y (2018) The pore growth process and pore coalescence process in Gasar copper. Mater Charact 137:231–243

    Article  CAS  Google Scholar 

  2. Zou N, Li Q (2020) Microstructure and hardness of porous magnesium processed by powder metallurgy using polystyrene as the space holder. In: Jordon JB, Miller V, Joshi VV, Neelameggham NR (eds) Magnesium technology 2020. Springer International Publishing, Cham, pp 387–391

    Google Scholar 

  3. Esfahani AK, Babaei M, Sarrami-Foroushani S (2021) A numerical model coupling phase transformation to predict microstructure evolution and residual stress during quenching of 1045 steel. Math Comput Simul 179:1–22

    Article  Google Scholar 

  4. Gupta M, Meenashisundaram GK (2015) Processing, mechanical and corrosion characteristics, insight into designing biocompatible magnesium alloys and composites. Springer, Singapore

    Google Scholar 

  5. Shapovalov VI (1999) Metal-hydrogen phase diagrams in the vicinity of melting temperatures. In: Conference: AVS International Liquid Metal Processing and Casting Symposium, Santa Fe, NM (US), 02/21/1999–02/24/1999; Other Information: PBD: 6 Jan 1999United States, 1999, pp. Medium: P; Size: 16 pages

  6. Cheng M-Q, Wahafu T, Jiang G-F, Liu W, Qiao Y-Q, Peng X-C, Cheng T, Zhang X-L, He G, Liu X-Y (2016) A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep 6:24134

    Article  CAS  Google Scholar 

  7. Esfahani AK (2021) Numerical simulation of heat treatment process by incorporating stress state on martensitic transformation to investigate microstructure and stress state of 1045 steel gear parts. Metall Mater Trans B 52:4109–4129

    Article  CAS  Google Scholar 

  8. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C 71:1253–1266

    Article  CAS  Google Scholar 

  9. Kovačič A, Borovinšek M, Vesenjak M, Ren Z (2018) Indirect reconstruction of pore morphology for parametric computational characterization of unidirectional porous iron. Materials (Basel, Switzerland) 11:193

    Article  Google Scholar 

  10. Ghali S, Eissa M (2018) Influence of different parameters on compression strength of foam steel produced by slip reaction foam sintering. Ironmaking Steelmaking 45:90–97

    Article  CAS  Google Scholar 

  11. Boczkal G, Janoska M, Setman D, Schafler E, Dlugosz P, Darlak P (2021) Magnesium gasar as a potential monolithic hydrogen absorbent. Int J Hydrogen Energy 46:13106–13115

    Article  CAS  Google Scholar 

  12. Patel P, Bhingole PP, Makwana D (2018) Manufacturing, characterization and applications of lightweight metallic foams for structural applications: review. Mater Today Proc 5:20391–20402

    Article  CAS  Google Scholar 

  13. Shahin K, Barazandeh M, Zhang L, Hedayatkhah A, He T, Bao H, Mansoorianfar M, Pang M, Wang H, Wei R, Wang R (2021) Biodiversity of new lytic bacteriophages infecting Shigella spp. in freshwater environment. Front Microbiol 12:619323

    Article  Google Scholar 

  14. Shahin K, Zhang L, Bao H, Hedayatkhah A, Komijani M (2020) An in-vitro study on a novel six-phage cocktail against multi-drug resistant-ESBL Shigella in aquatic environment. Lett Appl Microbiol 72:231–237

    Article  Google Scholar 

  15. Shapovalov V (2007) Prospective applications of gas-eutectic porous materials (Gasars) in USA. Mater Sci Forum 539–543:1183–1187

    Article  Google Scholar 

  16. Shapovalov V, Boyko L (2004) Gasar—a new class of porous materials. Adv Eng Mater 6:407–410

    Article  CAS  Google Scholar 

  17. Kucharczyk A, Naplocha K, Kaczmar JW, Dieringa H, Kainer KU (2018) Current status and recent developments in porous magnesium fabrication. Adv Eng Mater 20:1700562

    Article  Google Scholar 

  18. Nakajima H (2013) Porous metals with directional pores. Springer, Tokyo

    Book  Google Scholar 

  19. (2000) Chapter 2 - Making metal foams. In: Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (eds.) Metal Foams. Butterworth-Heinemann, Burlington, pp 6–23

  20. Ide T, Tane M, Nakajima H (2013) Effect of solidification condition and alloy composition on formation and shape of pores in directionally solidified Ni–Al alloys. Metall Mater Trans A 44:4257–4265

    Article  CAS  Google Scholar 

  21. Yuan L, Yanxiang L, Jiang W, Huawei Z (2005) Evaluation of porosity in lotus-type porous magnesium fabricated by metal/gas eutectic unidirectional solidification. Mater Sci Eng A 402:47–54

    Article  Google Scholar 

  22. Rajak DK, Gupta M (2020) Manufacturing methods of metal foams. In: Rajak DK, Gupta M (eds) An insight into metal based foams: processing properties and applications. Springer, Singapore, pp 39–52

    Chapter  Google Scholar 

  23. Liu PS, Chen GF (2014) Chapter five—fabricating porous ceramics. In: Liu PS, Chen GF (eds) Porous materials. Butterworth-Heinemann, Boston, pp 221–302

    Chapter  Google Scholar 

  24. Banhart J (2013) Light-metal foams—history of innovation and technological challenges. Adv Eng Mater 15:82–111

    Article  CAS  Google Scholar 

  25. Liu Y, Li Y, Wan J (2007) Directional solidification of metal-gas eutectic and fabrication of regular porous metals. Front Mech Eng China 2:180–183

    Article  Google Scholar 

  26. Chen Z, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK (2022) Porous materials for hydrogen storage. Chem 8:693–716

    Article  CAS  Google Scholar 

  27. Nakajima H (2007) Fabrication, properties and application of porous metals with directional pores. Prog Mater Sci 52:1091–1173

    Article  CAS  Google Scholar 

  28. Onishi H, Ueno S, Hyun SK, Nakajima H (2009) Fabrication of lotus-type porous cobalt and silicon through decomposition of moisture. Metall Mater Trans A 40:438–443

    Article  Google Scholar 

  29. Nakajima H, Kim SY, Park JS (2009) Fabrication of porous aluminium with directional pores through thermal decomposition method. J Phys Conf Ser 165:012063

    Article  Google Scholar 

  30. Kim TB, Suzuki S, Nakajima H (2009) Fabrication of a lotus-type porous Al–Si alloy by continuous casting with a thermal decomposition method. J Phys Conf Ser 165:012067

    Article  Google Scholar 

  31. Mohammadi Zahrani M, Meratian M, Kabiri Y (2012) Innovative processing of lotus-type porous magnesium through thermal decomposition of wood. Mater Lett 85:14–17

    Article  CAS  Google Scholar 

  32. Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817

    Article  CAS  Google Scholar 

  33. Zhang C, Chao L, Zhang Z, Zhang L, Li Q, Fan H, Zhang S, Liu Q, Qiao Y, Tian Y, Wang Y, Hu X (2021) Pyrolysis of cellulose: evolution of functionalities and structure of bio-char versus temperature. Renew Sustain Energy Rev 135:110416

    Article  CAS  Google Scholar 

  34. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2015) Introduction to spectroscopy. In: 4th ed., BROOKS/COLE, Department of Chemistry Western Washington University Bellingham, Washington

  35. Banyasz JL, Li S, Lyons-Hart J, Shafer KH (2001) Gas evolution and the mechanism of cellulose pyrolysis. Fuel 80:1757–1763

    Article  CAS  Google Scholar 

  36. Ebrahimi M, Mobasherpour I, Barzegar H, Shirani F (2019) Taguchi design for optimization of structural and mechanical properties of hydroxyapatite–alumina–titanium nanocomposite. Ceram Int 45:10097–10105

    Article  CAS  Google Scholar 

  37. Mansoorianfar M, Mansourianfar M, Fathi M, Bonakdar S, Ebrahimi M, Zahrani EM, Hojjati-Najafabadi A, Li D (2020) Surface modification of orthopedic implants by optimized fluorine-substituted hydroxyapatite coating: enhancing corrosion behavior and cell function. Ceram Int 46:2139–2146

    Article  CAS  Google Scholar 

  38. Mansoorianfar M, Rahighi R, Hojjati-Najafabadi A, Mei C, Li D (2021) Amorphous/crystalline phase control of nanotubular TiO2 membranes via pressure-engineered anodizing. Mater Des 198:109314

    Article  CAS  Google Scholar 

  39. Mansoorianfar M, Shahin K, Marlen M, Li D (2021) Cellulose-reinforced bioglass composite as flexible bioactive bandage to enhance bone healing. Ceram Int 47:416–423

    Article  CAS  Google Scholar 

  40. Rahighi R, Panahi M, Akhavan O, Mansoorianfar M (2021) Pressure-engineered electrophoretic deposition for gentamicin loading within osteoblast-specific cellulose nanofiber scaffolds. Mater Chem Phys 272:125018

    Article  CAS  Google Scholar 

  41. Mansoorianfar M, Tavoosi M, Mozafarinia R, Ghasemi A, Doostmohammadi A (2017) Preparation and characterization of TiO2 nanotube arrays on Ti6Al4V surface for enhancement of cell treatment. Surf Coat Technol 321:409–415

    Article  CAS  Google Scholar 

  42. Hussain Z, Ullah I, Liu X, Shen W, Ding P, Zhang Y, Gao T, Mansoorianfar M, Gao T, Pei R (2022) Tannin-reinforced iron substituted hydroxyapatite nanorods functionalized collagen-based composite nanofibrous coating as a cell-instructive bone-implant interface scaffold. Chem Eng J 438:135611

    Article  CAS  Google Scholar 

  43. Teng Y, Wei J, Du H, Mojtaba M, Li D (2020) A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. J Mater Chem A 8:11695–11711

    Article  CAS  Google Scholar 

  44. Shahin K, Bao H, Zhu S, Soleimani-Delfan A, He T, Mansoorianfar M, Wang R (2022) Bio-control of O157:H7, and colistin-resistant MCR-1-positive Escherichia coli using a new designed broad host range phage cocktail. LWT 154:112836

    Article  CAS  Google Scholar 

  45. Yang K, Peng H, Wen Y, Li N (2010) Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci 256:3093–3097

    Article  CAS  Google Scholar 

  46. Wan Z, Chen C, Meng T, Mojtaba M, Teng Y, Feng Q, Li D (2019) Multifunctional wet-spun filaments through robust nanocellulose networks wrapping to single-walled carbon nanotubes. ACS Appl Mater Interfaces 11:42808–42817

    Article  CAS  Google Scholar 

  47. Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–199

    Article  CAS  Google Scholar 

  48. Chen JH, Liu PS, Song S (2022) Preparation and compression performance of porous magnesium alloy composite with ceramic hollow spheres. J Alloy Compd 894:162397

    Article  CAS  Google Scholar 

  49. Hussain Z, Ullah S, Yan J, Wang Z, Ullah I, Ahmad Z, Zhang Y, Cao Y, Wang L, Mansoorianfar M, Pei R (2022) Electrospun tannin-rich nanofibrous solid-state membrane for wastewater environmental monitoring and remediation. Chemosphere 307:135810

    Article  CAS  Google Scholar 

  50. Liu Y, Zhang Y, An Z, Zhao H, Zhang L, Cao Y, Mansoorianfar M, Liu X, Pei R (2021) Slide-ring structure-based double-network hydrogel with enhanced stretchability and toughness for 3D-bio-printing and its potential application as artificial small-diameter blood vessels. ACS Appl Bio Mater 4:8597–8606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the Isfahan University of Technology for its financial support, laboratory facilities, and legal assistance.

Funding

We have no pecuniary or other personal interest, direct or indirect, in any matter that raises or may raise a conflict with our duties. In order for our article to proceed to publication, all authors gratefully acknowledge the financial support provided by the Jiangsu Postdoctoral Research Funding Program (Grant no. 2021K306C) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

ZS helped in experiment, analyzing, and writing; MM helped in writing, polishing, and revising; MM and MP cotributed to supervision and financial support.

Corresponding author

Correspondence to Mahmood Meratian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, Z., Mansoorianfar, M., Panjepour, M. et al. Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process. J Mater Sci 58, 9297–9307 (2023). https://doi.org/10.1007/s10853-023-08563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08563-8

Navigation