Skip to main content

Advertisement

Log in

Shish-kebab structured poly(ε-caprolactone) nanofibers induce bionic mineralized calcium phosphate coating for bone tissue engineering

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mineralization is one of the important indexes to evaluate bone repair performance of bone repair materials. The rapid deposition and uniform distribution of mineral coating have always been a research focus of biomineralized membrane materials. Here, poly (ε-caprolactone) (PCL) nanofibers with shish-kebab (SK) structure biomimetic the surface features of collagen fibrils in bone tissue were created by electrospinning technology and self-induced crystallization methods. Biomimetic mineralization method was used to fabricate mineralized PCL nanofibrous membranes. SK structure increased the specific surface area of PCL nanofibrous membranes and provided more nucleation sites to promote mineralization and crystallization of calcium phosphate (CaP) mineralized layer, and mineralized PCL nanofibrous membrane significantly enhanced cell proliferation, attachment and ALP activity. SK structure and CaP coating synergistically promoted cell proliferation and osteoinductive ability of PCL nanofibrous membrane which had potential application value in the field of bone repair materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Giorgio I, dell’Isola F, Andreaus U, Alzahrani F, Hayat T, Lekszycki T (2019) Biomech Model Mechanobiol 18:1639–1663. https://doi.org/10.1007/s10237-019-01166-w

    Article  Google Scholar 

  2. Tian Y, Liu M, Liu Y et al (2021) J Biomed Mater Res Part A 109:1209–1219. https://doi.org/10.1002/jbm.a.37114

    Article  CAS  Google Scholar 

  3. Deng L, Yu A, Qi B et al (2020) Int J Surg 81:85–93. https://doi.org/10.1016/j.ijsu.2020.07.013

    Article  Google Scholar 

  4. Stafford PR, Norris BL (2010) Injury 41:S72–S77. https://doi.org/10.1016/S0020-1383(10)70014-0

    Article  Google Scholar 

  5. Wang Z, Wang Y, Yan J et al (2021) Adv Drug Deliv Rev 174:504–534. https://doi.org/10.1016/j.addr.2021.05.007

    Article  CAS  Google Scholar 

  6. Dee P, You HY, Teoh S-H, Le Ferrand H (2020) J Mech Behav Biomed Mater 112:104078. https://doi.org/10.1016/j.jmbbm.2020.104078

    Article  CAS  Google Scholar 

  7. Zhang Y, Yin C, Cheng Y et al (2019) Adv Wound Care 9:441–452. https://doi.org/10.1089/wound.2018.0879

    Article  Google Scholar 

  8. Tran CT, Gargiulo C, Thao HD, Tuan HM, Filgueira L, Strong DM (2011) Cell Tissue Bank 12:247–261. https://doi.org/10.1007/s10561-010-9208-2

    Article  CAS  Google Scholar 

  9. Li JJ, Dunstan CR, Entezari A et al (2019) Adv Healthc Mater 8:1801298. https://doi.org/10.1002/adhm.201801298

    Article  CAS  Google Scholar 

  10. Ferreira FV, Otoni CG, Lopes JH et al (2021) Mater Sci Eng: C 123:111853. https://doi.org/10.1016/j.msec.2020.111853

    Article  CAS  Google Scholar 

  11. Camargo ER, Serafim BM, da Cruz AF et al (2021) Surf Coat Technol 412:127033. https://doi.org/10.1016/j.surfcoat.2021.127033

    Article  CAS  Google Scholar 

  12. Locarno S, Eleta-Lopez A, Lupo MG, Gelmi ML, Clerici F, Bittner AM (2019) RSC Adv 9:20565. https://doi.org/10.1039/C9RA02486G

    Article  CAS  Google Scholar 

  13. Pattanashetti NA, Achari DD, Torvi AI, Doddamani RV, Kariduraganavar MY (2020) Materialia 12:100826. https://doi.org/10.1016/j.mtla.2020.100826

    Article  CAS  Google Scholar 

  14. Chahal S, Kumar A, Hussian FSJ (2019) J Biomater Sci Polym Ed 30:1308–1355. https://doi.org/10.1080/09205063.2019.1630699

    Article  CAS  Google Scholar 

  15. Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V (2021) Acta Biomater 123:123–153. https://doi.org/10.1016/j.actbio.2020.12.032

    Article  CAS  Google Scholar 

  16. Choi E, Bae S, Kim D et al (2021) J Ind Eng Chem 94:282–291. https://doi.org/10.1016/j.jiec.2020.11.001

    Article  CAS  Google Scholar 

  17. Yang G-H, Mun F, Kim G (2016) Chem Eng J 288:648–658. https://doi.org/10.1016/j.cej.2015.12.047

    Article  CAS  Google Scholar 

  18. Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S et al (2021) Polym Int 70:1182–1201. https://doi.org/10.1002/pi.6136

    Article  CAS  Google Scholar 

  19. Goncalves EM, Oliveira FJ, Silva RF et al (2016) J Biomed Mater Res Part B Appl Biomater 104:1210. https://doi.org/10.1002/jbm.b.33432

    Article  CAS  Google Scholar 

  20. Zhu WM, Wang DP, Xiong JY et al (2015) Artif Cells Nanomed Biotechnol 43:361–365. https://doi.org/10.3109/21691401.2014.893521

    Article  CAS  Google Scholar 

  21. Ma J, Lin L, Zuo Y et al (2019) RSC Adv 9:5338–5346. https://doi.org/10.1039/C8RA06652C

    Article  CAS  Google Scholar 

  22. Yin H-M, Li X, Wang P et al (2019) J Biomed Mater Res Part A 107:654–662. https://doi.org/10.1002/jbm.a.36584

    Article  CAS  Google Scholar 

  23. Wang W, Zhang B, Li M et al (2021) Compos Part B Eng 224:109192. https://doi.org/10.1016/j.compositesb.2021.109192

    Article  CAS  Google Scholar 

  24. Venugopal E, Sahanand KS, Bhattacharyya A, Rajendran S (2019) Nanomed Nanotechnol Biol Med 21:102044. https://doi.org/10.1016/j.nano.2019.102044

    Article  CAS  Google Scholar 

  25. Siddiqui N, Kishori B, Rao S et al (2021) Mol Biotechnol 63:363–338. https://doi.org/10.1007/s12033-021-00311-0

    Article  CAS  Google Scholar 

  26. Wei S, Ma J-X, Xu L, Gu X-S, Ma X-L (2020) Mil Med Res 7:54. https://doi.org/10.1186/s40779-020-00280-6

    Article  CAS  Google Scholar 

  27. Sun H, Zhang C, Zhang B et al (2022) Chem Eng J 427:130961. https://doi.org/10.1016/j.cej.2021.130961

    Article  CAS  Google Scholar 

  28. Gleeson SE, Kim S, Qian Q, Yu T, Marcolongo M, Li CY (2021) ACS Appl Bio Mater 4:571–580. https://doi.org/10.1021/acsabm.0c01133

    Article  CAS  Google Scholar 

  29. Yadi M, Esfahani H, Sheikhi M, Mohammadi M (2020) Surf Coat Technol 401:126256. https://doi.org/10.1016/j.surfcoat.2020.126256

    Article  CAS  Google Scholar 

  30. Du JH, Ren LY, Zhang B (2013) Preparation of PHB/PLLA/n-HA composite Ultrafine Fibers Via Electrospinning. Adv Text Eng Mater 821–822:179–183. https://doi.org/10.4028/www.scientific.net/amr.821-822.179

    Article  Google Scholar 

  31. Zhang H, Fu Q-W, Sun T-W et al (2015) Colloids Surf B 136:27–36. https://doi.org/10.1016/j.colsurfb.2015.08.015

    Article  CAS  Google Scholar 

  32. Liu W, Bi W, Sun Y et al (2020) Mater Sci Eng C 110:110670. https://doi.org/10.1016/j.msec.2020.110670

    Article  CAS  Google Scholar 

  33. Lin K, Wu C, Chang J (2014) Acta Biomater 10:4071–4102. https://doi.org/10.1016/j.actbio.2014.06.017

    Article  CAS  Google Scholar 

  34. Didekhani R, Sohrabi MR, Soleimani M, Seyedjafari E, Hanaee-Ahvaz H (2020) Polym Bull 77:701–715. https://doi.org/10.1007/s00289-019-02750-x

    Article  CAS  Google Scholar 

  35. Park J, Lee SJ, Jo HH et al (2017) J Ind Eng Chem 46:175–181. https://doi.org/10.1016/j.jiec.2016.10.028

    Article  CAS  Google Scholar 

  36. Ho CC, Fang HY, Wang B, Huang TH, Shie MY (2018) Int Endod J 51:E291–E300. https://doi.org/10.1111/iej.12799

    Article  Google Scholar 

  37. Rong D, Chen P, Yang Y et al (2016) J Func Biomater 7:6. https://doi.org/10.3390/jfb7010006

    Article  CAS  Google Scholar 

  38. Jing X, Mi HY, Wang XC, Peng XF, Turng LS (2015) ACS Appl Mater Interfaces 7:6955–6965. https://doi.org/10.1021/acsami.5b00900

    Article  CAS  Google Scholar 

  39. Li F, Feng QL, Cui FZ, Li HD, Schubert H (2002) Surf Coat Technol 154:88–93. https://doi.org/10.1016/S0257-8972(01)01710-8

    Article  CAS  Google Scholar 

  40. Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J (2019) ACS Appl Mater Interf 11:37381–37396. https://doi.org/10.1021/acsami.9b07053

    Article  CAS  Google Scholar 

  41. Feng B, Duan H, Fu W, Cao Y, Jie Zhang W, Zhang Y (2015) J Biomed Mater Res Part A 103:431–438. https://doi.org/10.1002/jbm.a.35184

    Article  CAS  Google Scholar 

  42. Qi H, Ye Z, Ren H et al (2016) Life Sci 148:139–144. https://doi.org/10.1016/j.lfs.2016.02.040

    Article  CAS  Google Scholar 

  43. Niu X, Wang L, Xu M et al (2021) Carbohydr Polym 260:117769. https://doi.org/10.1016/j.carbpol.2021.117769

    Article  CAS  Google Scholar 

  44. Mei W, Song D, Wu Z et al (2021) Ecotoxicol Environ Saf 214:112080. https://doi.org/10.1016/j.ecoenv.2021.112080

    Article  CAS  Google Scholar 

  45. Wang X, Salick MR, Wang X et al (2013) Biomacromol 14:3557–3569. https://doi.org/10.1021/bm400928b

    Article  CAS  Google Scholar 

  46. Liu L, Shang Y, Li C et al (2021) Adv Healthc Mater 10:2101195. https://doi.org/10.1002/adhm.202101195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key R&D Program of Shanxi Province (International Cooperation, 201903D421064), Natural Science Foundation of China (11802197), Graduate Innovation Project of Shanxi Province (2021Y254) and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-AT008, 2021SX-AT009), General Project of Natural Science of Shanxi Provincial Basic Research Program (202203021211125).

Author information

Authors and Affiliations

Authors

Contributions

YH: Investigation, Project administration, methodology, visualization and writing the draft. MK: Visualization, review, editing, investigation and verification. HD: Investigation, software and writing the draft. SL: Visualization, investigation and verification. YW: Conceptualization and methodology. DH: Conceptualization, supervision and methodology.

Corresponding author

Correspondence to Yinchun Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Kang, M., Liang, S. et al. Shish-kebab structured poly(ε-caprolactone) nanofibers induce bionic mineralized calcium phosphate coating for bone tissue engineering. J Mater Sci 58, 8092–8102 (2023). https://doi.org/10.1007/s10853-023-08559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08559-4

Navigation