Skip to main content
Log in

Antitumor activities of novel glycyrrhetinic acid-modified lipogel hybrid system in vitro

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, conventional chemotherapy for hepatocellular carcinoma is limited and has serious side effects due to premature release and limited lesion targeting recognition. In this study, to further address the challenges of drug delivery for liver cancer, a novel hybrid lipid–polymer nanocomposite, glycyrrhetinic acid-modified lipogel (GA-SS-LG), was designed to merge the beneficial features of both polymer-based and lipid-based delivery systems in a single nanocarrier, which was proposed as a liposome with a bifunctional ligand as well as a polymer gel core inside in the liposome. The inhibitory effect of the GA-SS-LG on HepG2 cells was studied in vitro by using curcumin (Cur) as a model drug. The experimental results show that the incorporation of the polymer gel core improved the stability of the liposomes and had the ability to enhance drug encapsulation and delay drug release. At the same time, the liposome outer membrane could be modified with functional ligands to deliver drugs accurately. Our system accurately delivers drugs to tumor cells and responds quickly to release the loaded drugs in large quantities. This study improves the antitumor activity of Cur by preparing a lipogel composite system and provides a new formulation that combines both the polymer-based and lipid-based delivery systems in a single nanocarrier for the clinical application of antitumor drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data and code availability

Data will be made available on request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Li YJ, Dong M, Kong FM, Zhou JP (2015) Folate-decorated anticancer drug and magnetic nanoparticles encapsulated polymeric carrier for liver cancer therapeutics. Int J Pharm 489:83–90. https://doi.org/10.1016/j.ijpharm.2015.04.028

    Article  CAS  Google Scholar 

  3. Lohitesh K, Chowdhury R, Mukherjee S (2018) Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int 18(1):44. https://doi.org/10.1186/s12935-018-0538-7

    Article  CAS  Google Scholar 

  4. Mohamed NK, Hamad MA, Hafez MZE, Wooley KL, Elsabahy M (2017) Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int J Cancer 140:1475–1484. https://doi.org/10.1002/ijc.30517

    Article  CAS  Google Scholar 

  5. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controll Release 200:138–157. https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  CAS  Google Scholar 

  6. Xu YL, Wang M, Ning SC, Yang ZL, Zhou LL, Xia XH (2022) Development of glycyrrhetinic acid and folate modified cantharidin loaded solid lipid nanoparticles for targeting hepatocellular. Molecules 27(20):6786. https://doi.org/10.3390/molecules27206786

    Article  CAS  Google Scholar 

  7. Azhar S, Ashari SE, Zainuddin N, Hassan M (2022) Nanostructured lipid carriers-hydrogels system for drug delivery: nanohybrid technology perspective. Molecules 27(1):289. https://doi.org/10.3390/molecules27010289

    Article  CAS  Google Scholar 

  8. Madkhali OA (2022) Perspectives and prospective on solid lipid nanoparticles as drug delivery systems. Molecules 27(5):1543. https://doi.org/10.3390/molecules27051543

    Article  CAS  Google Scholar 

  9. Zeng M, Xu Q, Zhou DZ, Sigen A, Alshehri F, Lara-Saez I, Zheng Y, Li M, Wang WX (2021) Highly branched poly(β-amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev 176:113842. https://doi.org/10.1016/j.addr.2021.113842

    Article  CAS  Google Scholar 

  10. Chacko IA, Ghate VM, Dsouza L, Lewis SA (2020) Lipid vesicles: a versatile drug delivery platform for dermal and trans dermal applications. Colloids Surf B Biointerfaces 195:111262. https://doi.org/10.1016/j.colsurfb.2020.111262

    Article  CAS  Google Scholar 

  11. Liu C, Feng Q, Sun JS (2019) Lipid nanovesicles by microfluidics: manipulation, synthesis, and drug delivery. Adv Mater 31(45):e804788. https://doi.org/10.1002/adma.201804788

    Article  CAS  Google Scholar 

  12. Rani S, Rana R, Saraogi GK, Kumar V, Gupta U (2019) Self-emulsifying oral lipid drug delivery systems: advances and challenges. AAPS PharmSciTech 20:1–12. https://doi.org/10.1208/s12249-019-1335-x

    Article  CAS  Google Scholar 

  13. Zhang SM, Lu CX, Zhang XL, Li JS, Jiang H (2016) Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system. Drug Deliv 23:1838–1845. https://doi.org/10.3109/10717544.2016.1141258

    Article  CAS  Google Scholar 

  14. Zhang N, Li J, Gao WX, Zhu WW, Yan HZQ, Li LY, Wu F, Pu YJ, He B (2022) Co-delivery of doxorubicin and anti-PD-L1 peptide in lipid/PLGA nanocomplexes for the chemo-immunotherapy of cancer. Mol Pharm 19:3439–3449. https://doi.org/10.1021/acs.molpharmaceut.2c00611

    Article  CAS  Google Scholar 

  15. Hou XC, Zaks T, Langer R, Dong YZ (2021) Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6:1078–1094. https://doi.org/10.1038/s41578-021-00358-0

    Article  CAS  Google Scholar 

  16. Gkionis L, Campbell RA, Aojula H, Harris LK, Tirella A (2020) Manufacturing drug co-loaded liposomal formulations targeting breast cancer: influence of preparative method on liposomes characteristics and in vitro toxicity. Int J Pharm 590:119926. https://doi.org/10.1016/j.ijpharm.2020.119926

    Article  CAS  Google Scholar 

  17. Gu Y, Bai L, Zhang Y, Zhang H, Xing D, Tian L, Zhou Y, Hao J, Liu Y (2020) Liposome as drug delivery system enhance anticancer activity of iridium (III) complex. J Liposome Res 31:342–355. https://doi.org/10.1080/08982104.2020.1818779

    Article  CAS  Google Scholar 

  18. Maritim S, Boulas P, Lin Y (2021) Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm 592:120051. https://doi.org/10.1016/j.ijpharm.2020.120051

    Article  CAS  Google Scholar 

  19. Wang GW, Wu BH, Li QY, Chen SQ, Jin XQ, Liu YJ, Zhou ZX, Shen YQ, Huang PT (2020) Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small 16(44):e2004172. https://doi.org/10.1002/smll.202004172

    Article  CAS  Google Scholar 

  20. He K, Tang M (2017) Safety of novel liposomal drugs for cancer treatment: Advances and prospects. Chem Biol Interact 295:13–19. https://doi.org/10.1016/j.cbi.2017.09.006

    Article  CAS  Google Scholar 

  21. Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M (2010) Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids 163:141–147. https://doi.org/10.1016/j.chemphyslip.2009.10.009

    Article  CAS  Google Scholar 

  22. Kang SN, Hong SS, Kim SY, Oh H, Lee MK, Lim SJ (2013) Enhancement of liposomal stability and cellular drug uptake by incorporating tributyrin into celecoxib-loaded liposomes. Asian J Pharm Sci 8:128–133. https://doi.org/10.1016/j.ajps.2013.07.016

    Article  CAS  Google Scholar 

  23. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P (2017) Quercetin-decorated curcumin liposome design for cancer therapy: & ITIn-vitro & ITand & ITIn-vivo & ITstudies. Curr Drug Deliv 14(8):1053–1059. https://doi.org/10.2174/1567201813666160829100453

    Article  CAS  Google Scholar 

  24. Ingvarsson PT, Yang M, Nielsen HM, Rantanen J, Foged C (2011) Stabilization of liposomes during drying. Expert Opin Drug Deliv 8:375–388. https://doi.org/10.1517/17425247.2011.553219

    Article  CAS  Google Scholar 

  25. Bures P, Huang Y, Oral E, Peppas NA (2001) Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. J Controll Release 72:25–33. https://doi.org/10.1016/s0168-3659(01)00259-0

    Article  CAS  Google Scholar 

  26. Tan SW, Li X, Guo YJ, Zhang ZP (2012) Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale 5:860–872. https://doi.org/10.1039/c2nr32880a

    Article  CAS  Google Scholar 

  27. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC (2012) Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med 9:474–491. https://doi.org/10.1016/j.nano.2012.11.010

    Article  CAS  Google Scholar 

  28. Hadinoto K, Sundaresan A, Cheow WS (2013) Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 85:427–443. https://doi.org/10.1016/j.ejpb.2013.07.002

    Article  CAS  Google Scholar 

  29. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM (2019) Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed 85:427–443. https://doi.org/10.2147/ijn.s198353

    Article  CAS  Google Scholar 

  30. Guan P, Lu Y, Qi J, Niu M, Lian R, Wu W (2015) Solidification of liposomes by freeze-drying: the importance of incorporating gelatin as interior support on enhanced physical stability. Int J Pharm 478:655–664. https://doi.org/10.1016/j.ijpharm.2014.12.016

    Article  CAS  Google Scholar 

  31. Petralito S, Paolicelli P, Nardoni M, Tedesco A, Trilli J, Di Muzio L, Cesa S, Casadei MA, Adrover A (2020) Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery II. Theoretical analysis and modelling of in-vitro release experiments. Int J Pharm 585:119467. https://doi.org/10.1016/j.ijpharm.2020.119471

    Article  CAS  Google Scholar 

  32. Raemdonck K, Braeckmans K, Demeester J, De Smedt SC (2014) Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 45:444–472. https://doi.org/10.1039/c3cs60299k

    Article  CAS  Google Scholar 

  33. Ahmed S, Corvis Y, Gahoual R, Euan A, Lai-Kuen R, Couillaud BM, Seguin J, Alhareth K, Mignet N (2019) Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. Int J Pharm 567:118488. https://doi.org/10.1016/j.ijpharm.2019.118488

    Article  CAS  Google Scholar 

  34. El-Refaie WM, Elnaggar YSR, El-Massik MA, Abdallah OY (2015) Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: development, in-vitro appraisal and in-vivo studies. Int J Pharm 486:88–98. https://doi.org/10.1016/j.ijpharm.2015.03.052

    Article  CAS  Google Scholar 

  35. Kawar D, Abdelkader H (2019) Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen. Pharm Dev Technol 24:947–953. https://doi.org/10.1080/10837450.2019.1572761

    Article  CAS  Google Scholar 

  36. Lu N, Yang K, Li J, Weng Y, Yuan B, Ma Y (2013) Controlled drug loading and release of a stimuli-responsive lipogel consisting of poly(n-isopropylacrylamide) particles and Lipids. J Phys Chem B 117:9677–9682. https://doi.org/10.1021/jp402826n

    Article  CAS  Google Scholar 

  37. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, Sohail M, Luo S, Um SH, Khant H (2011) Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 10:243–251. https://doi.org/10.1038/nmat2960

    Article  CAS  Google Scholar 

  38. Tiwari S, Goyal AK, Mishra N, Khatri K, Vaidya B, Mehta A, Wu Y, Vyas SP (2009) Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Controll Release 140:157–165. https://doi.org/10.1016/j.jconrel.2009.08.004

    Article  CAS  Google Scholar 

  39. Torres-Martínez A, Angulo-Pachón CA, Galindo F, Miravet JF (2019) Liposome-enveloped molecular nanogels. Langmuir 35:13375–13381. https://doi.org/10.1021/acs.langmuir.9b02282

    Article  CAS  Google Scholar 

  40. Viallat A, Dalous J, Abkarian M (2004) Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage. Biophys J 86:2179–2187. https://doi.org/10.1016/s0006-3495(04)74277-0

    Article  CAS  Google Scholar 

  41. Sun YQ, Dai CM, Yin ML, Lu JH, Hu HY, Chen DW (2018) Hepatocellular carcinoma-targeted effect of configurations and groups of glycyrrhetinic acid by evaluation of its derivative-modified liposomes. Int J Nanomed 13:1631–1632. https://doi.org/10.2147/ijn.s153944

    Article  CAS  Google Scholar 

  42. Wang H, Wang B, Wang S, Chen J, Zhi W, Guan Y, Cai B, Zhu Y, Jia Y, Huang S (2022) Injectable in situ intelligent thermo-responsive hydrogel with glycyrrhetinic acid-conjugated nano graphene oxide for chemo-photothermal therapy of malignant hepatocellular tumor. J Biomater Appl 37:151–165. https://doi.org/10.1177/08853282221078107

    Article  CAS  Google Scholar 

  43. Zhang C, Wang W, Liu T, Wu Y, Guo H, Wang P, Tian Q, Wang Y, Yuan Z (2012) Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials 33:2187–2196. https://doi.org/10.1016/j.biomaterials.2011.11.045

    Article  CAS  Google Scholar 

  44. Zhang L, Yao J, Zhou J, Wang T, Zhang Q (2013) Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int J Pharm 441:654–664. https://doi.org/10.1016/j.ijpharm.2012.10.030

    Article  CAS  Google Scholar 

  45. Zhao L, Liang L, Guo M, Li M, Yu X, Wang Y, Wang Y (2021) Hepatocellular carcinoma targeting and pharmacodynamics of paclitaxel nanoliposomes modified by glycyrrhetinic acid and ferric tetroxide. Curr Top Med Chem 21:1268–1284. https://doi.org/10.2174/1568026621666210621090005

    Article  CAS  Google Scholar 

  46. Zhu XL, Huang SN, Li LH, Wang SS, Chen JQ, Guan YB, Wang BY, Jia YY (2021) Glycyrrhetinic acid-decorated and docetaxel-loaded thermosensitive liposomes for combination therapy against hepatocellular carcinoma. J Nanoparticle Res 23:158. https://doi.org/10.1007/s11051-021-05273-7

    Article  CAS  Google Scholar 

  47. Gao J, Ma X, Zhang L, Yan J, Cui H, Zhang Y, Wang D, Zhang H (2020) Self-assembled disulfide bond bearing paclitaxel—camptothecin prodrug nanoparticle for lung cancer therapy. Pharmaceutics 12(12):1169. https://doi.org/10.3390/pharmaceutics12121169

    Article  CAS  Google Scholar 

  48. Kuang X, Chi D, Li J, Guo C, Yang Y, Zhou S, Luo C, Liu H, He Z, Wang Y (2021) Disulfide bond based cascade reduction-responsive Pt(IV) nanoassemblies for improved anti-tumor efficiency and biosafety. Colloids Surf B Biointerfaces 203:111766. https://doi.org/10.1016/j.colsurfb.2021.111766

    Article  CAS  Google Scholar 

  49. Pan Z, Yang G, Yuan J, Pan M, Li J, Tan H (2022) Effect of the disulfide bond and polyethylene glycol on the degradation and biophysicochemical properties of polyurethane micelles. Biomater Sci 10(3):794–807. https://doi.org/10.1039/d1bm01422f

    Article  CAS  Google Scholar 

  50. Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM (2021) Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 11(3):392. https://doi.org/10.3390/biom11030392

    Article  CAS  Google Scholar 

  51. Song W, Chen X, Dai C, Lin D, Pang X, Zhang D, Liu G, Jin Y, Lin J (2022) Comparative study of preparation, evaluation, and pharmacokinetics in beagle dogs of curcumin β-cyclodextrin inclusion complex, curcumin solid dispersion, and curcumin phospholipid complex. Molecules 27:2998. https://doi.org/10.3390/molecules27092998

    Article  CAS  Google Scholar 

  52. Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA (2021) The role of curcumin in cancer treatment. Biomedicines 9(9):1086. https://doi.org/10.3390/biomedicines9091086

    Article  CAS  Google Scholar 

  53. Ailioaie LM, Ailioaie C, Litscher G (2021) Latest innovations and nanotechnologies with curcumin as a nature-inspired photosensitizer applied in the photodynamic therapy of cancer. Pharmaceutics 13:1562. https://doi.org/10.3390/pharmaceutics13101562

    Article  CAS  Google Scholar 

  54. Tabanelli R, Brogi S, Calderone V (2021) Improving curcumin bioavailability: current strategies and future perspectives. Pharmaceutics 13:1715. https://doi.org/10.3390/pharmaceutics13101715

    Article  CAS  Google Scholar 

  55. Hong JS, Vreeland WN, DePaoli LSH, Locascio LE, Gaitan M, Raghavan SR (2008) Liposome-templated supramolecular assembly of responsive alginate nanogels. Langmuir 24:4092–4096. https://doi.org/10.1021/la7031219

    Article  CAS  Google Scholar 

  56. Huang W, Zhang C (2011) Assembly and characterization of lipid-lipid binding protein particles. J Biotechnol 154:60–67. https://doi.org/10.1016/j.jbiotec.2011.04.006

    Article  CAS  Google Scholar 

  57. Lind TK, Cárdenas M, Wacklin HP (2014) Formation of supported lipid bilayers by vesicle fusion: effect of deposition temperature. Langmuir 30:7259–7263. https://doi.org/10.1021/la500897x

    Article  CAS  Google Scholar 

  58. Wang G, Li S, Lin H, Brumbaugh EE, Huang C (1999) Effects of various numbers and positions of cis double bonds in the sn-2 acyl chain of phosphatidylethanolamine on the chain-melting temperature. J Biol Chem 274:12289–12299. https://doi.org/10.1074/jbc.274.18.12289

    Article  CAS  Google Scholar 

  59. Liu Y, Li M, Yang YK, Xia Y, Nieh M (2014) The effects of temperature, salinity, concentration and PEGylated lipid on the spontaneous nanostructures of bicellar mixtures. Biochim Biophys Acta (BBA)-Biomembr 1838:1871–1880. https://doi.org/10.1016/j.bbamem.2014.02.004

    Article  CAS  Google Scholar 

  60. Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109:1630–1638. https://doi.org/10.1016/j.bpj.2015.08.029

    Article  CAS  Google Scholar 

  61. Men Y, Peng S, Yang P, Jiang Q, Zhang Y, Shen B, Dong P, Pang Z, Yang W (2018) Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery. ACS Appl Mater Interfaces 10:23509–23521. https://doi.org/10.1021/acsami.8b03943

    Article  CAS  Google Scholar 

  62. Chen Y, Thayumanavan S (2009) Amphiphilicity in homopolymer surfaces reduces nonspecific protein adsorption†. Langmuir 25:13795–13799. https://doi.org/10.1021/la901692a

    Article  CAS  Google Scholar 

  63. Pasmore M, Todd P, Smith S, Baker D, Silverstein J, Coons D, Bowan CN (2001) Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J Membr Sci 194:15–32. https://doi.org/10.1016/s0376-7388(01)00468-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the National Natural Science Foundation of China (No. 81401510), Hubei Provincial Natural Science Foundation of China (2022CFB464), TCM research project of Hubei health and Family Planning Commission (ZY2019M031) and the Fundamental Research Funds for the Central Universities, South-Central MinZu University (CZZ21010).

Author information

Authors and Affiliations

Authors

Contributions

ZW: Investigation, Formal analysis, Writing—Original Draft. HF: Investigation, Formal analysis. XY: Investigation, Formal analysis. XY: Investigation, Formal analysis. SZ: Investigation, Formal analysis. JH: Investigation, Formal analysis. LK: Investigation, Formal analysis. XL: Investigation. XY: Conceptualization, Resources, Writing Review & Editing. YH: Conceptualization, Writing—Original Draft, Writing Review & Editing, Funding acquisition.

Corresponding author

Correspondence to Yan Hu.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

After deliberation by the Scientific Research Ethics and Science and Technology Safety Committee of South-Central Minzu University, the design scheme and research content of the experiment meet the requirements of animal experiment ethics promulgated by the international and national standards, and agree that the experiment is implemented as planned. The ethic approval number is 2022-scuec-021.

Additional information

Handling Editor: Steven Naleway.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Fu, H., Ye, X. et al. Antitumor activities of novel glycyrrhetinic acid-modified lipogel hybrid system in vitro. J Mater Sci 58, 5788–5807 (2023). https://doi.org/10.1007/s10853-023-08394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08394-7

Navigation