Skip to main content

Advertisement

Log in

Research status of tribological properties optimization of high-entropy alloys: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have attracted extensive attention due to their excellent mechanical properties, thermodynamic stability, tribological properties, and corrosion resistance. In this paper, the tribological properties of HEAs were reviewed, including definition and preparation method of HEAs, testing and characterization method of tribological properties, influence of HEAs components on tribological properties, and anti-wear effect of process optimization. Firstly, the definition of HEAs and the enhancement of high-entropy effect, lattice distortion effect, delayed diffusion effect, and “cocktail” effect were briefly introduced. The advantages and disadvantages of current smelting and powder metallurgy methods were summarized, and various additive manufacturing techniques were discussed for preparing HEAs coatings. Secondly, the testing techniques and characterization methods of tribological properties of alloys were introduced. According to different wear mechanisms, the wear was classified as abrasive wear, adhesive wear, fatigue wear, corrosion wear, and oxidation wear. The research on reactive wear reduction, a new hotspot, was emphatically discussed. Furthermore, the influence of various metal elements and non-metal elements B, C, N, O, and Si in HEAs on tribological properties was analyzed, as well as the anti-wear mechanisms in the doped hard phases and self-lubricating phases. Meanwhile, the strengthening effects of surface remelting, heat treatment, and surface ceramization on the wear resistance of HEAs were reviewed. Finally, although some achievements have been made so far, there are still many challenges in the development of wear resistance for HEAs, and suggestions for future research directions were presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

References

  1. Wang Y-Z, Wang Y-J (2022) Disentangling diffusion heterogeneity in high-entropy alloys. Acta Mater 224:117527

    Article  CAS  Google Scholar 

  2. Qiu X-W, Liu C-G (2013) Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding. J Alloy Compd 553:216–220

    Article  CAS  Google Scholar 

  3. Sheng GUO (2011) Liu CT Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21(6):433–446

    Article  Google Scholar 

  4. Qiu X-W, Zhang Y-P, He Li, Liu C-g (2013) Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloy Compd 549:195–199

    Article  CAS  Google Scholar 

  5. Peng S, Jin Ke, Yi X, Dong Z, Guo X, Liu Y, Cheng Y, Jia N, Duan H, Xue J (2022) Mechanical behavior of the HfNbZrTi high entropy alloy after ion irradiation based on micro-pillar compression tests. J Alloy Compd 892:162043

    Article  CAS  Google Scholar 

  6. Tariq NH, Naeem M, Hasan BA, Akhter JI, Siddique M (2013) Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloy Compd 556:79–85

    Article  CAS  Google Scholar 

  7. Otto F, Yang Y, Bei H, George EP (2013) Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater 61(7):2628–2638

    Article  CAS  Google Scholar 

  8. Ming-xing REN, Bang-sheng LI, Heng-zhi FU (2013) Formation condition of solid solution type high-entropy alloy. Trans Nonferrous Metals Soc China 23(4):991–995

    Article  Google Scholar 

  9. Qi Wu, Wang W, Xiao Yang Lu, Xie JZ, Li D, Zhang Y (2022) Effect of Zr on phase separation, mechanical and corrosion behavior of heterogeneous CoCrFeNiZrx high-entropy alloy. J Mater Sci Technol 109:76–85

    Article  Google Scholar 

  10. Zhiqiang F, Weiping C, Huaqiang X, Liwei Z, Dezhi Z, Shaofeng Y (2013) Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des 44:535–539

    Article  Google Scholar 

  11. Leonardo Israel Farfan-Cabrera (2019) Tribology of electric vehicles: a review of critical components, current state and future improvement trends. Tribol Int 138:473–486

    Article  Google Scholar 

  12. Ping L, Honor EP, Robert JKW, Terry JH, Nicholas RH (2021) Early wear detection and its significance for condition monitoring. Tribol Int 159:106946

    Article  Google Scholar 

  13. Rosenkranz A, Costa HL, Baykara MZ, Martini A (2021) Synergetic effects of surface texturing and solid lubricants to tailor friction and wear–a review. Tribol Int 155:106792

    Article  CAS  Google Scholar 

  14. Chao JL, Cheng LW, Mu LL, Ying GX, Wei JL, Ji JY, Xin L, Chong L, Sheng FZ (2022) Effect of different durations on the microstructure and tribological behavior of (Co1.5FeNi)90Ti6Al4 high entropy alloy. Vacuum 195:110677

    Article  Google Scholar 

  15. Ming-Hao C, Ming-Hung T, Woei-Ren W, Su-Jien L, Jien-Wei Y (2011) Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Materialia 59(16):6308–6317

    Article  Google Scholar 

  16. Dada M, Popoola P, Mathe N, Pityana S, Adeosun S (2022) In-situ reactive synthesis and characterization of a high entropy alloy coating by laser metal deposition. Int J Lightweight Mater Manuf 5(1):11–19

    CAS  Google Scholar 

  17. Hui Z, Yizhu H, Ye P (2013) Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening. Scripta Materialia 69(4):342–345

    Article  Google Scholar 

  18. Zhang H, Pan Ye, He Y, Jiao H (2011) Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci 257(6):2259–2263

    Article  CAS  Google Scholar 

  19. Garg M, Grewal HS, Sharma RK, Gwalani B, Arora HS (2023) Circumventing strength-ductility paradox in high entropy alloys through deformation processing. J Alloy Compd 933:167750

    Article  CAS  Google Scholar 

  20. Hui L, Jinxin H, Zhiqiang C, Li J (2023) Interesting ‘island-like’ microstructure and tribological evaluation of Al15CrFeNiWTi05 high entropy alloy coating manufactured by laser cladding. Tribol Int 179:108171

    Article  Google Scholar 

  21. Li X, Li H, Li Q, Jin C, Hua Ke, Wang H (2022) The determining role of Al addition on tribology properties and oxidation behavior at elevated temperatures of TiZrHfNb refractory high-entropy alloy. Mater Charact 189:111921

    Article  CAS  Google Scholar 

  22. Qiong W, Ke H, Ziqi Z, Fan Z, Hongxing W, Qing Z, Haifeng W (2023) Revealing the B addition on tribology performance in TiZrHfTa0.5 refractory high-entropy alloy at ambient and elevated temperature. J Alloys Compd 931:167521

    Article  Google Scholar 

  23. Ge Z, Khashayar K, Shan H, Xiaosong L, Dapeng Z, Hong W, Yuankui C, Bin L, Qianli H (2023) Dual-structured oxide coatings with enhanced wear and corrosion resistance prepared by plasma electrolytic oxidation on Ti-Nb-Ta-Zr-Hf high-entropy alloy. Surf Coat Technol 5:129254

    Google Scholar 

  24. Chavan A, Mandal S, Roy M (2023) Cobalt free refractory high entropy alloys for total joint arthroplasty: In-vitro wear, corrosion and cytocompatibility evaluation. J Alloy Compd 938:168499

    Article  CAS  Google Scholar 

  25. Chen B, Zhuo L (2023) Latest progress on refractory high entropy alloys: Composition, fabrication, post processing, performance, simulation and prospect. Int J Refract Metal Hard Mater 110:105993

    Article  CAS  Google Scholar 

  26. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhou YJ, Lin JP et al (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10:534–538

    Article  CAS  Google Scholar 

  28. Yeh JW (2006) Recent progress in high entropy alloys. Annales De Chimie-Science Des Materiaux 31:633–648

    Article  CAS  Google Scholar 

  29. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  30. Yeh JW (2013) Alloy design strategies and future trends in high-entropy alloys. JOM 65(12):1759–1771

    Article  CAS  Google Scholar 

  31. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) Design of high entropy alloys: A single-parameter thermodynamic rule. Scripta Mater 104:53–55

    Article  CAS  Google Scholar 

  32. Ma D, Grabowski B, Körmann F, Neugebauer J, Raabe D (2015) Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater 100:90–97

    Article  CAS  Google Scholar 

  33. Kube SA, Schroers J (2020) Metastability in high entropy alloys. Scripta Mater 186:392–400

    Article  CAS  Google Scholar 

  34. Zhou Q, Yin Du, Han W, Jia Q, Deng Y, Wang H (2020) Identifying the high entropy effect on plastic dynamics in bulk metallic glasses: a nanoindentation study at room and elevated temperatures. Mater Des 189:108500

    Article  CAS  Google Scholar 

  35. Zhao YJ, Qiao JW, Ma SG, Gao MC, Yang HJ, Chen MW, Zhang Y (2016) A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des 96:10–15

    Article  CAS  Google Scholar 

  36. Lu ZP, Wang H, Chen MW, Baker I, Yeh JW, Liu CT, Nieh TG (2015) An assessment on the future development of high-entropy alloys: summary from a recent workshop. Intermetallics 66:67–76

    Article  CAS  Google Scholar 

  37. Wang Z, Fang Q, Li J, Liu B, Liu Y (2018) Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. J Mater Sci Technol 34(2):349–354

    Article  CAS  Google Scholar 

  38. Fanchao M, Wenyan Z, Zhukun Z, Ruixin S, Andrew C-PC, Chongchong W, Hailiang H, Shangzhou Z, Hua Z, Lilong Z, Liang J, Peter KL, Shuying C, Yang T (2021) Charge transfer effect on local lattice distortion in a HfNbTiZr high entropy alloy. Scripta Materialia 203:114104

    Article  Google Scholar 

  39. Ruixin W, Yu T, Shun L, Yuanlin A, Yongyan L, Bin X, Lian Z, Xiyue L, Shuxin B (2020) Effect of lattice distortion on the diffusion behavior of high-entropy alloys. J Alloys Compd 825:154099

    Article  Google Scholar 

  40. Li J, Yamanaka K, Chiba A (2022) Significant lattice-distortion effect on compressive deformation in Mo-added CoCrFeNi-based high-entropy alloys. Mater Sci Eng, A 830:142295

    Article  CAS  Google Scholar 

  41. Qing-Long Xu, Liu K-C, Wang K-Y, Li-Yan Lou Yu, Zhang C-J, Li C-X (2021) TGO and Al diffusion behavior of CuAlxNiCrFe high-entropy alloys fabricated by high-speed laser cladding for TBC bond coats. Corros Sci 192:109781

    Article  Google Scholar 

  42. Lalit K, Jaiveer S, Joo-Hee K, Yoon SK, Dong-Ik K, Jin-Yoo S, Shi-Hoon C (2021) Deciphering the role of multiple generations of annealing twins on texture evolution in cold-rolled high entropy alloys during annealing. Scripta Materialia 205:114221

    Article  Google Scholar 

  43. Wang H, Koyama M, Hojo T, Akiyama E (2021) Hydrogen embrittlement and associated surface crack growth in fine-grained equiatomic CoCrFeMnNi high-entropy alloys with different annealing temperatures evaluated by tensile testing under in situ hydrogen charging. Int J Hydrogen Energy 46(65):33028–33038

    Article  CAS  Google Scholar 

  44. Chunduo D, Yu F, Yue P, Yupeng Y, Cuiwei D, Zhiyong L (2021) Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments. Mater Charact 179:111313

    Article  Google Scholar 

  45. Chang H-W, Huang P-K, Yeh J-W, Davison A, Tsau C-H, Yang C-C (2008) Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings. Surf Coat Technol 202(14):3360–3366

    Article  CAS  Google Scholar 

  46. Bhardwaj V, Zhou Q, Zhang F, Han W, Yin Du, Hua Ke, Wang H (2021) Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribol Int 160:107031

    Article  CAS  Google Scholar 

  47. Liu XJ, Duan YP, Yang X, Huang LX, Gao MM, Wang TM (2021) Enhancement of magnetic properties in FeCoNiCr0.4CuX high entropy alloys through the cocktail effect for megahertz electromagnetic wave absorption. J Alloys Compd 872:159602

    Article  CAS  Google Scholar 

  48. Chang CC, Hsiao YT, Chen YL, Tsai CY, Lee YJ, Ko PH, Chang SY (2021) Lattice distortion or cocktail effect dominates the performance of Tantalum-based high-entropy nitride coatings. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2021.151894

    Article  Google Scholar 

  49. Cao BX, Wang C, Yang T, Liu CT (2020) Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Mater 187:250–255

    Article  CAS  Google Scholar 

  50. Wang M, Ma ZL, Xu ZQ, Cheng XW (2021) Effects of vanadium concentration on mechanical properties of VxNbMoTa refractory high-entropy alloys. Mater Sci Eng A 808:140848

    Article  CAS  Google Scholar 

  51. Li D, Jia N, Huang H, Chen S, Dou Y, He X, Yang W, Xue Y, Hua Z, Zhang F, Wang L, Jin K, Cai H (2021) Helium ion irradiation enhanced precipitation and the impact on cavity formation in a HfNbZrTi refractory high entropy alloy. J Nucl Mater 552:153023

    Article  CAS  Google Scholar 

  52. Zhu C, Li Z, Hong C, Dai P, Chen J (2020) Microstructure and mechanical properties of the TiZrNbMoTa refractory high-entropy alloy produced by mechanical alloying and spark plasma sintering. Int J Refract Metal Hard Mater 93:105357

    Article  CAS  Google Scholar 

  53. Xiang T, Cai Z, Peng Du, Li K, Zhang Z, Xie G (2021) Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering. J Mater Sci Technol 90:150–158

    Article  CAS  Google Scholar 

  54. Zhang X, Cui X, Jin G, Ding Q, Zhang D, Wen X, Jiang L, Wan S, Tian H (2022) Microstructure evolution and properties of NiTiCrNbTax refractory high-entropy alloy coatings with variable Ta content. J Alloy Compd 891:161756

    Article  CAS  Google Scholar 

  55. Chen L, Wang Y, Hao X, Zhang X, Liu H (2021) Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface. Vacuum 183:109823

    Article  CAS  Google Scholar 

  56. Chengchao Du, Lei Hu, Ren X, Li Y, Zhang F, Liu P, Li Y (2021) Cracking mechanism of brittle FeCoNiCrAl HEA coating using extreme high-speed laser cladding. Surf Coat Technol 424:127617

    Article  Google Scholar 

  57. Zhang H, Zhao Y, Cai J, Ji S, Geng J, Sun X, Li D (2021) High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing. Mater Des 201:109462

    Article  CAS  Google Scholar 

  58. Xiao B, Jia W, Tang H, Wang J, Zhou L (2022) Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting. J Mater Sci Technol 108:54–63

    Article  Google Scholar 

  59. Braeckman BR, Boydens F, Hidalgo H, Dutheil P, Jullien M, Thomann A-L, Depla D (2015) High entropy alloy thin films deposited by magnetron sputtering of powder targets. Thin Solid Films 580:71–76

    Article  CAS  Google Scholar 

  60. Alexander K, Michael S, Harald L, Sven U, Sabine S, Dorothée VS, Sascha S, Bronislava G, Hans C, Hans-Jürgen S, Martin H (2017) Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni. Surf Coat Technol 325:174–180

    Article  Google Scholar 

  61. Weibing L, Si L, Libo G, Hongti Z, Shang X, Jian S, Xunli W, Yang L (2017) Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films 638:383–388

    Article  Google Scholar 

  62. Huang PK, Yeh JW, Shun TT, Chen SK (2004) Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater 6(12):74–78

    Article  CAS  Google Scholar 

  63. Martin L, Thomas L, Thomas L (2020) High-temperature wear behaviour of AlCoCrFeNiTi05 coatings produced by HVOF. Surf Coat Technol 403:126379

    Article  Google Scholar 

  64. Anupam A, Kumar S, Chavan NM et al (2019) First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation. J Mater Res 34:796–806

    Article  CAS  Google Scholar 

  65. Lavanya R, Ameey A, Karthick G, Christopher CB, Andrew SMA, Murty SVSN, Daniel F, Murty BS, Ravi SK (2021) Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy. Mater Sci Eng A 819:141503

    Article  Google Scholar 

  66. Yuankui C, Weidong Z, Bin L, Yong L, Meng D, Ao F (2021) Phase decomposition behavior and its effects on mechanical properties of TiNbTa0.5ZrAl0.5 refractory high entropy alloy. J Mater Sci Technol 66:10–20

    Article  Google Scholar 

  67. Huang Y-C, Lai Y-C, Lin Y-H, Shyi-Kaan Wu (2021) A study on the severely cold-rolled and annealed quaternary equiatomic derivatives from quinary HfNbTaTiZr refractory high entropy alloy. J Alloy Compd 855:157404

    Article  CAS  Google Scholar 

  68. Junwei M, Hongwei Y, Jun W, Yiping L, Tongmin W, Tingju L (2022) Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment. J Alloys Compd 894:162380

    Article  Google Scholar 

  69. Schellert S, Gorr B, Laube S, Kauffmann A, Heilmaier M, Christ HJ (2021) Oxidation mechanism of refractory high entropy alloys Ta-Mo-Cr-Ti-Al with varying Ta content. Corros Sci 192:109861

    Article  CAS  Google Scholar 

  70. Guo W, Ding N, Liu G, Jing C, Huixia Xu, Liu L, Na Xu, Xiaofeng Wu, He J, Zaïri F (2022) Microstructure evolution of a multi-track AlCoCrFeNi high entropy alloy coating fabricated by laser cladding. Mater Charact 184:111660

    Article  CAS  Google Scholar 

  71. Lan LW, Yang HJ, Guo RP, Wang XJ, Zhang M, Liaw PK, Qiao JW (2021) High-temperature sliding wear behavior of nitrided Ni45(CoCrFe)40(AlTi)15 high-entropy alloys. Mater Chem Phys 270:124800

    Article  CAS  Google Scholar 

  72. Kumar D, Jaishri B, Meena DK, Huang EW, Chang YJ, Yeh AC, Jain J, Neelakantan S, Gosvami NN (2021) Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy. Wear 468:203595

    Article  Google Scholar 

  73. Karakaş MS, Günen A, Çarboğa C, Karaca Y, Demir M, Altınay Y, Erdoğan A (2021) Microstructure, some mechanical properties and tribocorrosion wear behavior of boronized Al0.07Co1.26Cr1.80Fe1.42Mn1.35Ni1.10 high entropy alloy. J Alloys Compd 886:161222

    Article  Google Scholar 

  74. Lu XL, Zhang CX, Wang C, Cao XJ, Ma R, Sui XD, Hao JY, Liu WM (2021) Investigation of (CrAlTiNbV)Nx high-entropy nitride coatings via tailoring nitrogen flow rate for anti-wear applications in aviation lubricant. Appl Surf Sci 557:149813

    Article  CAS  Google Scholar 

  75. Huang TC, Hsu SY, Lai YT, Tsai SY, Duh JG (2021) Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating. Surf Coat Technol 425:127713

    Article  CAS  Google Scholar 

  76. Haghdadi N, Guo T, Ghaderi A, Hodgson PD, Barnett MR, Fabijanic DM (2019) The scratch behaviour of AlxCoCrFeNi (x = 0.3 and 1.0) high entropy alloys. Wear 428–429:293–301

    Article  Google Scholar 

  77. Duan HT, Wu Y, Hua M, Yuan CQ, Wang D, Tu JS, Kou HC, Li J (2013) Tribological properties of AlCoCrFeNiCu high-entropy alloy in hydrogen peroxide solution and in oil lubricant. Wear 297(1–2):1045–1051

    Article  CAS  Google Scholar 

  78. Lu XL, Zhang CX, Zhang X, Cao XJ, Kang J, Sui XD, Hao JY, Liu WM (2021) Dependence of mechanical and tribological performance on the microstructure of (CrAlTiNbV)Nx high-entropy nitride coatings in aviation lubricant. Ceram Int 47(19):27342–27350

    Article  CAS  Google Scholar 

  79. Zhou JL, Cheng YH, Yang JY, Wang QQ, Liang XB (2021) Effects of WS2 and Ti3AlC2 additions on the high temperature wear properties of laser cladding YW1/NiCoCrAlY tool coating. Ceram Int 47(24):35124–35133

    Article  CAS  Google Scholar 

  80. Gopinath VM, Arulvel S (2021) A review on the steels, alloys/high entropy alloys, composites and coatings used in high temperature wear applications. Mater Today Proc 43(2):817–823

    Article  Google Scholar 

  81. Pole M, Sadeghilaridjani M, Shittu J, Ayyagari A, Mukherjee S (2020) High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette. J Alloy Compd 843:156004

    Article  CAS  Google Scholar 

  82. Zhang CX, Lu XL, Zhou HB, Wang YF, Sui XD, Shi ZQ, Hao JY (2021) Construction of a compact nanocrystal structure for (CrNbTiAlV)Nx high-entropy nitride films to improve the tribo-corrosion performance. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.127921

    Article  Google Scholar 

  83. Shittu J, Sadeghilaridjani M, Pole M et al (2021) Tribo-corrosion response of additively manufactured high-entropy alloy. NPJ Mater Degrad 5:31

    Article  CAS  Google Scholar 

  84. Kong WC, Li KM, Hu J (2021) Effects of laser power on microstructure and friction–wear performances of direct energy deposited ZrO2-8%Y2O3-NiCoCrAl coatings on Ti6Al4V alloy. Opt Laser Technol 142:107214

    Article  CAS  Google Scholar 

  85. Zhou JL, Kong DJ (2020) Effects of Al and Ti additions on corrosive–wear and electrochemical behaviors of laser cladded FeSiB coatings. Opt Laser Technol 124:105958

    Article  CAS  Google Scholar 

  86. Zhou JL, Kong DJ (2020) Microstructure, tribological performances, and wear mechanisms of Cr and Mo reinforced FeSiB coatings by laser cladding. J Mater Eng Perform 29:7428–7444

    Article  CAS  Google Scholar 

  87. Li JY, Dong LG, Dong XW, Zhao WH, Liu JH, Xiong JX, Xu CY (2021) Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl Surf Sci 570:151236

    Article  CAS  Google Scholar 

  88. Zhou JL, Kong DJ (2021) Friction–wear performances and oxidation behaviors of Ti3AlC2 reinforced Co–based alloy coatings by laser cladding. Surf Coat Technol 408:126816

    Article  CAS  Google Scholar 

  89. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC (2006) Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261(5–6):513–519

    Article  CAS  Google Scholar 

  90. Geng YS, Cheng J, Tan H, Zhu SY, Yang J, Liu WM (2021) Tuning the mechanical and high temperature tribological properties of Co-Cr-Ni medium-entropy alloys via controlling compositional heterogeneity. J Alloy Compd 877:160326

    Article  CAS  Google Scholar 

  91. Fereidouni H, Akbarzadeh S, Khonsari MM (2019) On the assessment of variable loading in adhesive wear. Tribol Int 129:167–176

    Article  Google Scholar 

  92. Cai YC, Zhu LS, Cui Y, Shan MD, Li HJ, Xin Y, Han J (2021) Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers. Appl Surf Sci 543:148794

    Article  CAS  Google Scholar 

  93. Li H, Zhou H, Zhang DP, Zhang P, Zhou T (2022) Influence of varying distribution distance and angle on fatigue wear resistance of 40Cr alloy steel with laser bionic texture. Mater Chem Phys 277:125515

    Article  CAS  Google Scholar 

  94. Lu ZX, Mao YL, Ren SM, Pu JB, Fu ZY, Fan X, Gao SQ, Fan J (2021) A novel design of VAlTiCrCu/WC alternate multilayer structure to enhance the mechanical and tribo-corrosion properties of the high-entropy alloy coating. Mater Charact 176:111115

    Article  CAS  Google Scholar 

  95. Vo TD, Tran B, Tieu AK, Wexler D, Deng GY, Nguyen C (2021) Effects of oxidation on friction and wear properties of eutectic high-entropy alloy AlCoCrFeNi2.1. Tribol Int 160:107017

    Article  CAS  Google Scholar 

  96. Wang JY, Zhang BS, Yu YQ, Zhang ZJ, Zhu SS, Lou X, Wang ZZ (2020) Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding. Surf Coat Technol 384:125337

    Article  CAS  Google Scholar 

  97. Geng YS, Chen J, Tan H, Cheng J, Yang J, Liu WM (2020) Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures. Wear 456–457:203368

    Article  Google Scholar 

  98. Jin G, Cai ZB, Guan YJ, Cui XF, Liu Z, Li Y, Dong ML, Zhang D (2018) High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating. Appl Surf Sci 445:113–122

    Article  CAS  Google Scholar 

  99. Fang YH, Chen N, Du GP, Zhang MX, Zhao XR, Cheng H, Wu JB (2020) High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C, N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder. J Alloys Compd 815:152486

    Article  CAS  Google Scholar 

  100. Liu C, Li Z, Lu W et al (2021) Reactive wear protection through strong and deformable oxide nanocomposite surfaces. Nat Commun 12:5518

    Article  CAS  Google Scholar 

  101. Wu H, Zhang S, Wang ZY, Zhang CH, Chen HT, Chen J (2022) New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high entropy alloy coating: the role of Mo. Int J Refract Metal Hard Mater 102:105721

    Article  CAS  Google Scholar 

  102. Azmi E, Sefa ES, Kursat I, Kadir MD (2021) Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum 187:110143

    Article  Google Scholar 

  103. Parisa M, Mohammad RT, Pasquale C (2021) Effect of Iron content on the microstructure evolution, mechanical properties and wear resistance of FeXCoCrNi high-entropy alloy system produced via MA-SPS. J Alloys Compd 870:159410

    Article  Google Scholar 

  104. Zhen G, Shengqi X, Pu M, Chao W (2020) Microstructure and wear behavior of mechanically alloyed powder AlxMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding. Surf Coat Technol 401:126244

    Article  Google Scholar 

  105. Huang L, Wang X, Huang B, Zhao X, Chen H, Wang C (2022) Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys. Intermetallics 140:107397

    Article  CAS  Google Scholar 

  106. Parisa M, Mohammad RT, Tahereh Z, Pasquale C (2022) Investigation of hardness, wear and magnetic properties of NiCoCrFeZrx HEA prepared through mechanical alloying and spark plasma sintering. J Alloys Compd 892:161924

    Article  Google Scholar 

  107. Malatji N, Lengopeng T, Pityana S, Popoola API (2021) Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys. J Market Res 11:1594–1603

    CAS  Google Scholar 

  108. Xiao J-K, Tan H, Chen J, Martini A, Zhang C (2020) Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys. J Alloy Compd 847:156533

    Article  CAS  Google Scholar 

  109. Shang X, Bo S, Guo Y, Liu Q (2021) ZrC reinforced refractory-high-entropy-alloy coatings: compositional design, synthesis, interstitials, and microstructure evolution effects on wear, corrosion and oxidation behaviors+. Appl Surf Sci 564:150466

    Article  CAS  Google Scholar 

  110. Liu H, Sun S, Zhang T, Zhang G, Yang H, Hao J (2021) Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding. Surf Coat Technol 405:126522

    Article  CAS  Google Scholar 

  111. Yadav S, Aggrawal A, Kumar A, Biswas K (2019) Effect of TiB2 addition on wear behavior of (AlCrFeMnV)90Bi10 high entropy alloy composite. Tribol Int 132:62–74

    Article  CAS  Google Scholar 

  112. Guo Z, Zhang A, Han J, Meng J (2020) Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2. Tribol Int 151:106436

    Article  CAS  Google Scholar 

  113. Jiang Di, Cui H, Chen H, Zhao X, Ma G, Song X (2021) Wear and corrosion properties of B4C-added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic. Mater Des 210:110068

    Article  CAS  Google Scholar 

  114. Ghanbariha M, Farvizi M, Ebadzadeh T, Samiyan AA (2021) Effect of ZrO2 particles on the nanomechanical properties and wear behavior of AlCoCrFeNi–ZrO2 high entropy alloy composites. Wear 484–485:204032

    Article  Google Scholar 

  115. Fuxing Y, Yu Y, Zhi L, Lingzhi F, Lei G, Jianxing Y (2021) Microstructure and wear resistance of TiC reinforced AlCoCrFeNi2.1 eutectic high entropy alloy layer fabricated by micro-plasma cladding. Mater Lett 284(1):128859

    Google Scholar 

  116. Shi P, Yuan Yu, Xiong N, Liu M, Qiao Z, Yi G, Yao Q, Zhao G, Xie E, Wang Q (2020) Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings. Tribol Int 151:106470

    Article  CAS  Google Scholar 

  117. Jianbin W, Junjie L, Qing W, Jincheng W, Zhijun W, Liu CT (2019) The incredible excess entropy in high entropy alloys. Scripta Materialia 168:19–22

    Article  Google Scholar 

  118. Yang X, Zhou Y, Xi S, Chen Z, Wei P, He C, Li T, Gao Y, Hongjing Wu (2019) Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility. Mater Sci Eng A 767:138394

    Article  CAS  Google Scholar 

  119. Zhou K, Li J, Wang L, Yang H, Wang Z, Wang J (2019) Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics 114:106592

    Article  CAS  Google Scholar 

  120. Iyad AA, Carlos JR, Eduardo MB, Herbert MU (2019) Nanoindentation into a high-entropy alloy-an atomistic study. J Alloys Compd 803:618–624

    Article  Google Scholar 

  121. Cheng W, Tsung-Hsiung L, Yi-Chia L, Chia-Lin L, Jason S-CJ, Chun-Hway H (2019) Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping. Mater Sci Eng A 764:138192

    Article  Google Scholar 

  122. Abheepsit R, Jaya AC, Gurao NP, Krishanu B (2019) ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys. J Alloys Compd 806:587–595

    Article  Google Scholar 

  123. Wang M, Ma Z, Ziqi Xu, Cheng X (2019) Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys. J Alloy Compd 803:778–785

    Article  CAS  Google Scholar 

  124. Yu Fu, Huang C, Cuiwei Du, Li J, Dai C, Luo H, Liu Z, Li X (2021) Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corros Sci 191:109727

    Article  Google Scholar 

  125. Cheng J, Sun B, Ge Y, Xianlong H, Zhang L, Liang X, Zhang X (2020) Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: microstructure evolution and wear behavior. Surf Coat Technol 402:126321

    Article  CAS  Google Scholar 

  126. Yang Lu, Cheng Z, Zhu W, Zhao C, Ren F (2021) Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure. J Mater Sci Technol 73:1–8

    Article  CAS  Google Scholar 

  127. Geng Y, Tan H, Cheng J, Chen J, Sun Q, Zhu S, Yang J (2020) Microstructure, mechanical and vacuum high temperature tribological properties of AlCoCrFeNi high entropy alloy based solid-lubricating composites. Tribol Int 151:106444

    Article  CAS  Google Scholar 

  128. Geng Y, Chen J, Tan H, Cheng J, Zhu S, Yang J (2021) Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range. Tribol Int 157:106912

    Article  CAS  Google Scholar 

  129. Verma A, Tarate P, Abhyankar AC, Mohape MR, Gowtam DS, Deshmukh VP, Shanmugasundaram T (2019) High temperature wear in CoCrFeNiCux high entropy alloys: the role of Cu. Scripta Mater 161:28–31

    Article  CAS  Google Scholar 

  130. Ye F, Jiao Z, Yan S, Guo L, Feng L, Jianxing Yu (2020) Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer. Vacuum 174:109178

    Article  CAS  Google Scholar 

  131. Yan C, Junqi S, Sunusi MM, Keping G, Shengsun H (2020) Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl Surf Sci 512:145736

    Article  Google Scholar 

  132. Jin B, Zhang N, Huishu Yu, Hao D, Ma Y (2020) AlxCoCrFeNiSi high entropy alloy coatings with high microhardness and improved wear resistance. Surf Coat Technol 402:126328

    Article  CAS  Google Scholar 

  133. Li Y, Shi Y (2021) Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding. Opt Laser Technol 134:106632

    Article  CAS  Google Scholar 

  134. Joseph J, Haghdadi N, Shamlaye K, Hodgson P, Barnett M, Fabijanic D (2019) The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429:32–44

    Article  Google Scholar 

  135. Shiwen Hu, Li T, Zhenqian Su, Liu D (2022) Research on suitable strength, elastic modulus and abrasion resistance of Ti–Zr–Nb medium entropy alloys (MEAs) for implant adaptation. Intermetallics 140:107401

    Article  Google Scholar 

  136. Feng X, Zhang K, Zheng Y, Zhou H, Wan Z (2019) Effect of Zr content on structure and mechanical properties of (CrTaNbMoV)Zrx high-entropy alloy films. Nucl Instrum Methods Phys Res Sect B 457:56–62

    Article  CAS  Google Scholar 

  137. Zhi Q, Tan X, Liu Z, Liu Y, Zhang Q, Chen Y, Li M (2021) Effect of Zr content on microstructure and mechanical properties of lightweight Al2NbTi3V2Zrx high entropy alloy. Micron 144:103031

    Article  CAS  Google Scholar 

  138. Unnikrishnan TG, Paul C, Sellamuthu R, Arul S (2017) An investigation on the effects of Co, Ti and Si on microstructure, hardness and wear properties of AlCuNiFe based entropy alloys. Mater Today Proc 4(2A):178–187

    Article  Google Scholar 

  139. Vaidya M, Sen S, Zhang X, Frommeyer L, Rogal Ł, Sankaran S, Grabowski B, Wilde G, Divinski SV (2020) Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys. Acta Mater 196:220–230

    Article  CAS  Google Scholar 

  140. Zhao P, Li J, Zhang Y, Li X, Xia MM, Yuan BG (2021) Wear and high-temperature oxidation resistances of AlNbTaZrx high-entropy alloys coatings fabricated on Ti6Al4V by laser cladding. J Alloy Compd 862:158405

    Article  CAS  Google Scholar 

  141. Yin Du, Pei X, Tang Z, Zhang F, Zhou Q, Wang H, Liu W (2021) Mechanical and tribological performance of CoCrNiHfx eutectic medium-entropy alloys. J Mater Sci Technol 90:194–204

    Article  Google Scholar 

  142. Nagarjuna C, You HJ, Ahn S, Song JW, Jeong KY, Madavali B, Song G, Na YS, Won JW, Kim HS, Hong SJ (2021) Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions. Appl Surf Sci 549:149202

    Article  CAS  Google Scholar 

  143. Joseph J, Haghdadi N, Annasamy M, Kada S, Hodgson PD, Barnett MR, Fabijanic DM (2020) On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scripta Mater 186:230–235

    Article  CAS  Google Scholar 

  144. Xu Z, Li DY, Chen DL (2021) Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes. Wear 476:203650

    Article  CAS  Google Scholar 

  145. Wu M, Chen K, Xu Z, Li DY (2020) Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy. Wear 462–463:203493

    Article  Google Scholar 

  146. Zhangwei W, Ian B (2016) Interstitial strengthening of a f.c.c. FeNiMnAlCr high entropy alloy. Mate Lett 180:153–156

    Article  Google Scholar 

  147. Xujie G, Liang W, Nana G, Liangshun L, Guangming Z, Chengcheng S, Yanqing S, Jingjie G (2021) Microstructure and mechanical properties of multi-phase reinforced Hf-Mo-Nb-Ti-Zr refractory high-entropy alloys. Int J Refract Metals Hard Mater 5:105723

    Google Scholar 

  148. Lv S, Yufei Zu, Chen G, Xuesong Fu, Zhou W (2019) An ultra-high strength CrMoNbWTi-C high entropy alloy co-strengthened by dispersed refractory IM and UHTC phases. J Alloy Compd 788:1256–1264

    Article  CAS  Google Scholar 

  149. Qin Xu, Chen D, Tan C, Bi X, Wang Qi, Cui H, Zhang S, Chen R (2021) NbMoTiVSix refractory high entropy alloys strengthened by forming BCC phase and silicide eutectic structure. J Mater Sci Technol 60:1–7

    Article  Google Scholar 

  150. Byungchul K, Taeyeong K, Nguyen HD, Doan DP, Ho JR, Soon HH (2021) Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy. Int J Refract Metals Hard Mater 100:105636

    Article  Google Scholar 

  151. Aguilar-Hurtado JY, Vargas-Uscategui A, Paredes-Gil K, Palma-Hillerns R, Tobar MJ, Amado JM (2020) Boron addition in a non-equiatomic Fe50Mn30Co10Cr10 alloy manufactured by laser cladding: Microstructure and wear abrasive resistance. Appl Surf Sci 515:146084

    Article  CAS  Google Scholar 

  152. Benbin X, Aijun Z, Jiesheng H, Junyan Z, Junhu M (2022) Enhancing mechanical properties of the boron doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloy via tuning composition and microstructure. J Alloys Compd 896:162852

    Article  Google Scholar 

  153. Liu X, Lei W, Ma L, Liu J, Liu J, Cui J (2016) Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Metal Mater Eng 45(9):2201–2207

    Article  CAS  Google Scholar 

  154. Xiaobin G, Ian B, Francis EK, Simon PR, Hansheng C, Weidong Z, Yong L, Min S (2020) A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel. Mater Charact 170:110693

    Article  Google Scholar 

  155. Yucheng Y, Yaojia R, Yanwen T, Kaiyang L, Lichun B, Qianli H, Quan S, Yingtao T, Hong W (2021) Microstructure and tribological behaviors of FeCoCrNiMoSix high-entropy alloy coatings prepared by laser cladding. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2021.128009

    Article  Google Scholar 

  156. Guo NN, Wang L, Luo LS, Li XZ, Chen RR, Su YQ, Guo JJ, Fu HZ (2016) Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in-situ compound. J Alloys Compd 660:197–203

    Article  CAS  Google Scholar 

  157. Benbin X, Aijun Z, Jiesheng H, Junhu M (2021) Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. J Alloys Compd 869:159122

    Article  Google Scholar 

  158. Si YX, Wang GG, Wen M, Tong Y, Wang WW, Li Y, Yan LH, Yu WJ, Zhang SZ, Ren P (2022) Corrosion and friction resistance of TiVCrZrWNx high entropy ceramics coatings prepared by magnetron sputtering. Ceram Int 48:9342-9352

    Article  CAS  Google Scholar 

  159. Peng Y, Zhang W, Li T, Zhang M, Liu B, Liu Y, Wang Li, Songhao Hu (2020) Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding. Surf Coat Technol 385:125326

    Article  CAS  Google Scholar 

  160. Jiang PF, Zhang CH, Zhang S, Zhang JB, Chen J, Liu Y (2020) Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying. Mater Chem Phys 255:123571

    Article  CAS  Google Scholar 

  161. Gou Q, Xiong Ji, Guo Z, Junbo Liu Lu, Yang XL (2021) Influence of NbC additions on microstructure and wear resistance of Ti(C, N)-based cermets bonded by CoCrFeNi high-entropy alloy. Int J Refract Metal Hard Mater 94:105375

    Article  CAS  Google Scholar 

  162. Zhu S, Yaqiu Yu, Zhang B, Zhang Z, Yan X, Wang Z (2020) Microstructure and wear behaviour of in-situ TiN-Al2O3 reinforced CoCrFeNiMn high-entropy alloys composite coatings fabricated by plasma cladding. Mater Lett 272:127870

    Article  CAS  Google Scholar 

  163. Zhang B, Yaqiu Yu, Zhu S, Zhang Z, Tao X, Wang Z, Bin Lu (2022) Microstructure and wear properties of TiN–Al2O3–Cr2B multiphase ceramics in-situ reinforced CoCrFeMnNi high-entropy alloy coating. Mater Chem Phys 276:125352

    Article  CAS  Google Scholar 

  164. Zhang Z, Zhang B, Zhu S, Yaqiu Yu, Wang Z, Zhang X, Bin Lu (2021) Microstructural characteristics and enhanced wear resistance of nanoscale Al2O3/13 wt%TiO2-reinforced CoCrFeMnNi high entropy coatings. Surf Coat Technol 412:127019

    Article  CAS  Google Scholar 

  165. Li Z, Peixin Fu, Hong C, Chang Fa, Dai P (2021) Tribological behavior of Ti(C, N)-TiB2 composite cermets using FeCoCrNiAl high entropy alloys as binder over a wide range of temperatures. Mater Today Commun 26:102095

    Article  CAS  Google Scholar 

  166. Wang YL, Zhao L, Wan D, Guan S, Chan KC (2021) Additive manufacturing of TiB2-containing CoCrFeMnNi high-entropy alloy matrix composites with high density and enhanced mechanical properties. Mater Sci Eng A 825:141871

    Article  CAS  Google Scholar 

  167. Liang G, Jin G, Cui X, Qiu Z, Wang J (2022) The directional array TiN-reinforced AlCoCrFeNiTi high-entropy alloy synthesized in situ via magnetic field-assisted laser cladding. Appl Surf Sci 572:151407

    Article  CAS  Google Scholar 

  168. Zhou R, Chen G, Liu B, Wang J, Han L, Liu Y (2018) Microstructures and wear behaviour of (FeCoCrNi)1–x(WC)x high entropy alloy composites. Int J Refract Metal Hard Mater 75:56–62

    Article  CAS  Google Scholar 

  169. Li Z, Liu X, Guo K, Wang H, Cai B, Chang Fa, Hong C, Dai P (2019) Microstructure and properties of Ti(C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets. Mater Sci Eng A 767:138427

    Article  CAS  Google Scholar 

  170. Syed SA (2021) A critical review on self-lubricating ceramic-composite cutting tools. Ceram Int 47(15):20745–20767

    Article  Google Scholar 

  171. Magnus C, Cooper D, Sharp J, Rainforth WM (2019) Microstructural evolution and wear mechanism of Ti3AlC2–Ti2AlC dual MAX phase composite consolidated by spark plasma sintering (SPS). Wear 438–439:203013

    Article  Google Scholar 

  172. Yuan Y, Xin YL, Haitao D, Jun Y, Zhuhui Q, Jian L, Jinshan L (2020) Outstanding self-lubrication of SiC ceramic with porous surface/AlCoCrFeNiTi05 high-entropy alloy tribol-pair under 90 wt% H2O2 harsh environment. Mater Lett 276:128025

    Article  Google Scholar 

  173. Aijun Z, Jiesheng H, Bo S, Junhu M (2018) A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng A 731:36–43

    Article  Google Scholar 

  174. Luo JS, Sun WT, Duan RX, Yang WQ, Chan KC, Ren FZ, Yang XS (2022) Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance. J Mater Sci Technol 110:43–56

    Article  Google Scholar 

  175. Cai Z, Cui X, Liu Z, Li Y, Dong M, Jin G (2018) Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing. Opt Laser Technol 99:276–281

    Article  CAS  Google Scholar 

  176. Dan K, Jing G, Ruiwen L, Xiaohui Z, Yuepeng S, Zongxi L, Fengjiang G, Xiangfeng X, Yuan X, Wei W (2019) Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0.5 high entropy alloys. Intermetallics 114:106560

    Article  Google Scholar 

  177. Ali G (2021) Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf Coat Technol 421:127426

    Article  Google Scholar 

  178. Wu YH, Yang HJ, Guo RP, Wang XJ, Shi XH, Liaw PK, Qiao JW (2020) Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions. Wear 460–461:203452

    Article  Google Scholar 

  179. Lan LW, Wang XJ, Guo RP, Yang HJ, Qiao JW (2020) Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys. J Mater Sci Technol 42:85–96

    Article  CAS  Google Scholar 

  180. Cai ZB, Wang Z, Hong Y, Lu BW, Liu J, Li Y, Pu JB (2021) Improved tribological behavior of plasma-nitrided AlCrTiV and AlCrTiVSi high-entropy alloy films. Tribol Int 163:107195

    Article  CAS  Google Scholar 

  181. Ren B, Zhao RF, Zhang GP, Liu ZX, Cai B, Jiang AY (2022) Microstructure and properties of the AlCrMoZrTi/(AlCrMoZrTi)N multilayer high-entropy nitride ceramics films deposited by reactive RF sputtering. Ceram Int. https://doi.org/10.1016/j.ceramint.2022.02.245

    Article  Google Scholar 

  182. Cheng ZH, Yang W, Xu DP, Wu SK, Yao XF, Lv YK, Chen J (2020) Improvement of high temperature oxidation resistance of micro arc oxidation coated AlTiNbMo0.5Ta0.5Zr high entropy alloy. Mater Lett 262:127192

    Article  CAS  Google Scholar 

  183. Shi XQ, Yang W, Cheng ZH, Shao WT, Xu DP, Zhang Y, Chen J (2021) Influence of micro arc oxidation on high temperature oxidation resistance of AlTiCrVZr refractory high entropy alloy. Int J Refract Metal Hard Mater 98:105562

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (2021ZDPY0223), National Natural Science Foundation of China (NO.51676205), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

J-l Z took part in writing—original draft, methodology, writing—review & editing, investigation, formal analysis. J-y Y involved in writing—review and editing, investigation, resources. X-f Z took part in data curation. F-w M involved in data curation. K M took part in supervision, visualization. Y-h C involved in investigation, data curation, writing—review and editing.

Corresponding authors

Correspondence to Jin-yong Yang or Yan-hai Cheng.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Jl., Yang, Jy., Zhang, Xf. et al. Research status of tribological properties optimization of high-entropy alloys: a review. J Mater Sci 58, 4257–4291 (2023). https://doi.org/10.1007/s10853-023-08255-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08255-3

Navigation