Skip to main content
Log in

CO2 adsorption study of the zeolite imidazolate framework (ZIF-8) and its g-C3N4 composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This, study reports ZIF-8 and its g-C3N4 based composites for successful adsorption of carbon dioxide gas at temperature of 45 °C and 0–15 bar pressure. These samples were characterized via using different techniques like XRD, EDX, SEM, FTIR to study the structural and morphological properties, The SEM results shows rougher and porous rhombic dodecahedron morphology, and the EDX analysis confirms that the catalyst production is free of impurities. The FTIR and XRD analyses show all the peaks and bands correspond to crystalline structure and necessary functional group presence in the prepared adsorbents. The ZIF-8 and its g-C3N4 composites have good adsorption capacity. Among them ZIF-8@3wt% g-C3N4 shows the highest adsorption capacity of 315 mg g−1 at 45 °C and 0–15 bar pressure. The rising adsorption trend of all prepared materials shows that these samples do not reach their saturation point and can still adsorb more CO2 even at a pressure higher than 15 bar.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data and code availability

Data will be available on request.

References

  1. Hofmann DJ, Butler JH, Tans PPJAE (2009) A new look at atmospheric carbon dioxide. Atmos Environ 43(12):2084–2086

    Article  CAS  Google Scholar 

  2. Li Z et al (2020) Porous metal–organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain Chem Eng 8(41):15378–15404

    Article  CAS  Google Scholar 

  3. Duan C et al (2023) Simultaneous amino-functionalization and Fe-doping modification of ZIF-8 for efficient CO2 adsorption and cycloaddition reaction. Microporous Mesoporous Mater 347:112351

    Article  CAS  Google Scholar 

  4. Zhang Z et al (2013) Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF-8 via postsynthetic modification. AIChE J 59(6):2195–2206

    Article  CAS  Google Scholar 

  5. Aaron D, Tsouris CJSS (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348

    Article  CAS  Google Scholar 

  6. Raupach MR et al (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 104(24):10288–10293

    Article  CAS  Google Scholar 

  7. Usman M et al (2021) Advanced strategies in Metal-Organic Frameworks for CO2 Capture and Separation. Chem Rec 22(7):e202100230

    Google Scholar 

  8. Yu KMK et al (2008) Recent advances in CO2 capture and utilization. ChemSusChem: Chem Sustain Energy Mater 1(11):893–899

    Article  CAS  Google Scholar 

  9. Zheng W et al (2016) ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs. Sep Purif Technol 214:111–119

    Article  Google Scholar 

  10. Choi S et al (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem: Chem Sustain Energy Mater 2(9):796–854

    Article  CAS  Google Scholar 

  11. Noor T et al (2020) Nanocomposites of NiO/CuO based MOF with rGO: an efficient and robust electrocatalyst for methanol oxidation reaction in DMFC. Nanomaterials 10(8):1601

    Article  CAS  Google Scholar 

  12. Zaman N, Iqbal N, Noor T (2022) Advances and challenges of MOF derived carbon-based electrocatalysts and photocatalyst for water splitting: a review. Arab J Chem 2022:103906

    Article  Google Scholar 

  13. Zaman N, Noor T, Iqbal N (2021) Recent advances in the metal–organic framework-based electrocatalysts for the hydrogen evolution reaction in water splitting: a review. RSC Adv 11(36):21904–21925

    Article  CAS  Google Scholar 

  14. Liu X et al (2018) A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/gC 3 N 4 with highly enhanced photocatalytic activity under simulated sunlight. New J Chem 42(14):12180–12187

    Article  CAS  Google Scholar 

  15. Cheng J et al (2023) Carbon nanotubes grown on ZIF-L (Zn@ Co) surface improved CO2 permeability of mixed matrix membranes. J Membr Sci 670:121356

  16. Mohamed AM et al (2019) Computational investigation of the performance of ZIF-8 with encapsulated ionic liquids towards CO2 capture. Mol Phys 117(23–24):3791–3805

    Article  CAS  Google Scholar 

  17. Yang F et al (2022) Study on CO2 capture in Humid Flue Gas using Amine-modified ZIF-8. Sep Purif Technol 287:120535

    Article  CAS  Google Scholar 

  18. Abraha YW et al (2021) Optimized CO2 capture of the zeolitic imidazolate framework ZIF-8 modified by solvent-assisted ligand exchange. ACS Omega 6(34):21850–21860

    Article  CAS  Google Scholar 

  19. Yang F et al (2021) Enhanced stability and hydrophobicity of LiX@ ZIF-8 composite synthesized environmental friendly for CO2 capture in highly humid flue gas. Chem Eng J 410:128322

    Article  CAS  Google Scholar 

  20. Thomas A, Ahamed R, Prakash MJRA (2020) Selection of a suitable ZIF-8/ionic liquid (IL) based composite for selective CO 2 capture: the role of anions at the interface. RSC Adv 10(64):39160–39170

    Article  CAS  Google Scholar 

  21. Noor T et al (2019) Electro catalytic study of NiO-MOF/rGO composites for methanol oxidation reaction. Electrochim Acta 307:1–12

    Article  CAS  Google Scholar 

  22. Yi L et al (2017) Expanded graphite@ SnO2@ polyaniline composite with enhanced performance as anode materials for lithium ion batteries. Electrochim Acta 240:63–71

    Article  CAS  Google Scholar 

  23. Noor T et al (2021) Graphene based FeO/NiO MOF composites for methanol oxidation reaction. J Electroanal Chem 890:115249

    Article  CAS  Google Scholar 

  24. Panneri S et al (2017) C 3 N 4 anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catal Sci Technol 7(10):2118–2128

    Article  CAS  Google Scholar 

  25. Mansor ES, El Shall FN, Radwan EK (2022) Simultaneous decolorization of anionic and cationic dyes by 3D metal-free easily separable visible light active photocatalyst. Environ Sci Pollut Res 30(4):10775–10788

  26. Abbasi M et al (2022) Electrocatalytic study of cu/Ni MOF and its g-C3N4 composites for methanol oxidation reaction. Int J Energy Res 46(10):13915–13930

  27. Qiu M et al (2021) The photocatalytic reduction of U (VI) into U (IV) by ZIF-8/g-C3N4 composites at visible light. Environ Res 196:110349

    Article  CAS  Google Scholar 

  28. Li D et al (2019) Mpg-C3N4-ZIF-8 composites for the degradation of tetracycline hydrochloride using visible light. Water Sci Technol 80(11):2206–2217

    Article  CAS  Google Scholar 

  29. Thomas A et al (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem 18(41):4893–4908

    Article  CAS  Google Scholar 

  30. Zhai H-S, Cao L, Xia X-H (2013) Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chin Chem Lett 24(2):103–106

    Article  CAS  Google Scholar 

  31. Yaqoob L et al (2021) Electrochemical synergies of Fe–Ni bimetallic MOF CNTs catalyst for OER in water splitting. J Alloy Compd 850:156583

    Article  CAS  Google Scholar 

  32. Forgan RSJCS (2020) Modulated self-assembly of metal–organic frameworks. Chem Sci 11(18):4546–4562

    Article  CAS  Google Scholar 

  33. Kenyotha K et al (2020) Water based synthesis of ZIF-8 assisted by hydrogen bond acceptors and enhancement of CO2 uptake by solvent assisted ligand exchange. Crystals 10(7):599

    Article  CAS  Google Scholar 

  34. Tan X et al (2015) Conductive graphitic carbon nitride as an ideal material for electrocatalytically switchable CO2 capture. Sci Rep 5(1):1–8

    Article  CAS  Google Scholar 

  35. Asghar A, Iqbal N, Noor T (2020) Ultrasonication treatment enhances MOF surface area and gas uptake capacity. Polyhedron 181:114463

    Article  CAS  Google Scholar 

  36. Yuan X et al (2021) Design of core-shelled g-C3N4@ ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chem Eng J 416:129148

    Article  CAS  Google Scholar 

  37. Binti Yahya NH, Yeong YF, Lai LS (2017) Synthesis of amino-impregnated ZIF-8 for CO2 adsorption. In: IOP conference series: materials science and engineering. IOP Publishing

  38. Begum J, Hussain Z, Noor T (2020) Adsorption and kinetic study of Cr (VI) on ZIF-8 based composites. Mater Res Express 7(1):015083

    Article  CAS  Google Scholar 

  39. Cao J et al (2017) Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials 10(6):604

    Article  Google Scholar 

  40. Li Z et al (2017) Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J Mater Sci 52(7):3979–3991

    Article  CAS  Google Scholar 

  41. Sunasee S et al (2019) Sonophotocatalytic degradation of bisphenol A and its intermediates with graphitic carbon nitride. Environ Sci Pollut Res 26(2):1082–1093

    Article  CAS  Google Scholar 

  42. Kim M, Hwang S, Yu J-S (2007) Novel ordered nanoporous graphitic C3N4as a support for Pt–Ru anode catalyst in direct methanol fuel cell. J Mater Chem 17(17):1656–1659

    Article  CAS  Google Scholar 

  43. Gautam S, Cole DJN (2020) CO2 adsorption in metal-organic framework Mg-MOF-74: effects of inter-crystalline space. Nanomaterials 10(11):2274

    Article  CAS  Google Scholar 

  44. Binaeian E et al (2020) Study on the performance of Cd2+ sorption using dimethylethylenediamine-modified zinc-based MOF (ZIF-8-mmen): optimization of the process by RSM technique. Sep Sci Technol 55(15):2713–2728

    Article  CAS  Google Scholar 

  45. Wu C et al (2017) Fabrication of ZIF-8@ SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance. ACS Appl Mater Interfaces 9(12):11106–11115

    Article  CAS  Google Scholar 

  46. Huang D et al (2018) Synergistic effects of zeolite imidazole framework@ graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Adv 8(11):6099–6109

    Article  Google Scholar 

  47. Yuan D et al (2018) Graphite carbon nitride nanosheets decorated with ZIF-8 nanoparticles: effects of the preparation method and their special hybrid structures on the photocatalytic performance. J Alloys Compd 762:98–108

    Article  CAS  Google Scholar 

  48. Kim M, Hwang S, Yu J-S (2007) Novel ordered nanoporous graphitic C3N4 as a support for Pt–Ru anode catalyst in direct methanol fuel cell. J Mater Chem 17(17):1656–1659

    Article  CAS  Google Scholar 

  49. Hassan N et al (2020) Equilibrium, Kinetic and Thermodynamic studies of adsorption of cationic dyes from aqueous solution using ZIF-8. J Moroccan J Chem 8:8–3

    Google Scholar 

  50. Nordin NAHM, Ismail AF, Yahya N (2017) Zeolitic imidazole framework 8 decorated graphene oxide (ZIF-8/GO) mixed matrix membrane (MMM) for CO2/CH4 separation. J Teknol 79(1–2):59–63

    Google Scholar 

  51. Phoon BL et al (2021) Highly mesoporous g-C3N4 with uniform pore size distribution via the template-free method to enhanced solar-driven tetracycline degradation. Nanomaterials 11(8):2041

    Article  CAS  Google Scholar 

  52. Shen B et al (2020) Properties of cobalt-and nickel-doped ZIF-8 framework materials and their application in heavy-metal removal from wastewater. Nanomaterials 10(9):1636

    Article  CAS  Google Scholar 

  53. Tang H et al (2019) ZIF-8-derived hollow carbon for efficient adsorption of antibiotics. Nanomaterials 9(1):117

    Article  Google Scholar 

  54. Ünveren EE et al (2017) Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum 3(1):37–50

    Article  Google Scholar 

  55. Khan J et al (2019) Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture. Mater Res Express 6(10):105539

    Article  CAS  Google Scholar 

  56. Khan MA et al (2021) Nitrogen-rich mesoporous carbon for high temperature reversible CO2 capture. J CO2 Utiliz 43:101375

    Article  CAS  Google Scholar 

  57. Sabouni R (2013) Carbon dioxide adsorption by metal organic frameworks (synthesis, testing and modeling). Electronic Thesis and Dissertation Repository, 1472

  58. Liu X et al (2013) Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem Commun 49(80):9140–9142

    Article  CAS  Google Scholar 

  59. Lee, Y.-R., et al., ZIF-8: A comparison of synthesis methods. 2015. 271: p. 276–280.

  60. Furukawa H et al (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444

    Article  Google Scholar 

  61. Asghar A et al (2021) Efficient electrochemical synthesis of a manganese-based metal–organic framework for H 2 and CO 2 uptake. Green Chem 23(3):1220–1227

    Article  CAS  Google Scholar 

  62. Ma H et al (2021) In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohyd Polym 270:118376

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Higher Education Commission, Pakistan for financial support under NRPU Project No-6013.

Author information

Authors and Affiliations

Authors

Contributions

Arif Ullah Khan contributed to conception, experimental design, carrying out measurements, and manuscript composition; Tayyaba Noor contributed to supervision, reviewing, data analysis; Naseem Iqbal contributed to reviewing and data analysis; Neelam Zaman contributed to experimental design, carrying out measurements and manuscript composition; Zakir Hussain contributed to reviewing, editing.

Corresponding author

Correspondence to Tayyaba Noor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In this study, no research involving human participants and/or animals was conducted.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.U., Noor, T., Iqbal, N. et al. CO2 adsorption study of the zeolite imidazolate framework (ZIF-8) and its g-C3N4 composites. J Mater Sci 58, 3947–3959 (2023). https://doi.org/10.1007/s10853-023-08253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08253-5

Navigation