Skip to main content
Log in

Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin-film electrodes were prepared using a one-step drop-casting strategy without polymer binder and carbon black. The electrodes exhibit a thin-layer structure, which is an intriguing architecture for lithium-ion battery applications. A high reversible capacity (335.3 and 311.6 mAh g−1 for ZIF-8 and ZIF-67, respectively), good rate performance, and exceptionally cycling stability (about 95.5% initial capacity was retained after 100 cycles at a high current rate of 5 C) were observed in this study. Such an excellent electrochemical performance of the film electrodes is attributed to the thin-layer architecture, which provides easy access for Li+ ions to permeate the whole electrodes because of the shortened diffusion paths, and also to the unique property of the MOFs without the collapse of its structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Scheme 1

Similar content being viewed by others

References

  1. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous alpha-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12:4988–4991. doi:10.1021/nl302618s

    Article  Google Scholar 

  2. Yim C-H, Baranova EA, Courtel FM, Abu-Lebdeh Y, Davidson IJ (2011) Synthesis and characterization of macroporous tin oxide composite as an anode material for Li-ion batteries. J Power Sources 196:9731–9736. doi:10.1016/j.jpowsour.2011.07.061

    Article  Google Scholar 

  3. Liu X, Zhao J, Hao J, Su B-L, Li Y (2013) 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A 1:15076–15081. doi:10.1039/c3ta12923c

    Article  Google Scholar 

  4. Maiti S, Pramanik A, Manju U, Mahanty S (2015) Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance. ACS Appl Mater Interfaces 7:16357–16363. doi:10.1021/acsami.5b03414

    Article  Google Scholar 

  5. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444–1230456. doi:10.1126/science.1230444

    Article  Google Scholar 

  6. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Tang B, Zhao J (2015) Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications. J Appl Electrochem 45:541–547. doi:10.1007/s10800-015-0795-2

    Article  Google Scholar 

  7. Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B (2014) A novel anode material derived from organic-coated ZIF-8 nanocomposites with high performance in lithium ion batteries. Chem Commun 50:8057–8060. doi:10.1039/c4cc02691h

    Article  Google Scholar 

  8. Han X, Yi F, Sun T, Sun J (2012) Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries. Electrochem Commun 25:136–139. doi:10.1016/j.elecom.2012.09.014

    Article  Google Scholar 

  9. Férey G, Millange F, Morcrette M, Serre C, Doublet M-L, Grenèche J-M, Tarascon J-M (2007) Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew Chem Int Edit 46:3259–3263. doi:10.1002/anie.200605163

    Article  Google Scholar 

  10. Saravanan K, Nagarathinam M, Balaya P, Vittal JJ (2010) Lithium storage in a metal organic framework with diamondoid topology—a case study on metal formates. J Mater Chem 20:8329–8335. doi:10.1039/c0jm01671c

    Article  Google Scholar 

  11. Lin YZ, Zhang Q, Zhao C, Li H, Kong C, Shen C, Chen L (2015) An exceptionally stable functionalized metal-organic framework for lithium storage. Chem Commun 51:697–699. doi:10.1039/c0xx00000x

    Article  Google Scholar 

  12. Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X (2016) Metal organic frameworks for energy storage and conversion. Energy Storage Mater 2:35–62. doi:10.1016/j.ensm.2015.11.005

    Article  Google Scholar 

  13. Ameloot R, Aubrey M, Wiers BM, Gomora-Figueroa AP, Patel SN, Balsara NP, Long JR (2013) Ionic conductivity in the metal–organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide. Chem-Eur J 19:5533–5536. doi:10.1002/chem.201300326

    Article  Google Scholar 

  14. Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18:3203–3207. doi:10.1007/s10008-014-2578-9

    Article  Google Scholar 

  15. Worrall SD, Mann H, Rogers A, Bissett MA, Attfield MP, Dryfe RAW (2016) Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes. Electrochim Acta 197:228–240. doi:10.1016/j.electacta.2016.02.145

    Article  Google Scholar 

  16. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv Mater 27:2400–2405. doi:10.1002/adma.201405222

    Article  Google Scholar 

  17. Wang N, Wu C, Li J, Dong G, Guan L (2011) Binder-free manganese oxide/carbon nanomaterials thin film electrode for supercapacitors. ACS Appl Mater Interfaces 3:4185–4189. doi:10.1021/am201145k

    Article  Google Scholar 

  18. Tian B, Światowska J, Maurice V, Zanna S, Seyeux A, Klein LH, Marcus P (2013) Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries. J Phys Chem C 117:21651–21661. doi:10.1021/jp4064438

    Article  Google Scholar 

  19. Stassen I, Styles M, Van Assche T, Campagnol N, Fransaer J, Denayer J, Tan J-C, Falcaro P, De Vos D, Ameloot R (2015) Electrochemical film deposition of the zirconium metal–organic framework UiO-66 and application in a miniaturized sorbent trap. Chem Mater 27:1801–1807. doi:10.1021/cm504806p

    Article  Google Scholar 

  20. Yiping T, Xiaoxu T, Guangya H, Guoqu Z (2014) Nanocrystalline Li4Ti5O12-coated TiO2 nanotube arrays as three-dimensional anode for lithium-ion batteries. Electrochim Acta 117:172–178. doi:10.1016/j.electacta.2013.11.095

    Article  Google Scholar 

  21. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223. doi:10.1016/j.matlet.2012.05.077

    Article  Google Scholar 

  22. Torad NL, Hu M, Kamachi Y, Takai K, Imura M, Naito M, Yamauchi Y (2013) Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem Commun 49:2521–2523. doi:10.1039/c3cc38955c

    Article  Google Scholar 

  23. Lee DY, Yoon SJ, Shrestha NK, Lee S-H, Ahn H, Han S-H (2012) Unusual energy storage and charge retention in Co-based metal–organic-frameworks. Micropor Mesopor Mater 153:163–165. doi:10.1016/j.micromeso.2011.12.040

    Article  Google Scholar 

  24. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic − inorganic nanocomposite materials. Chem Mater 13:3169–3183. doi:10.1021/cm0101069

    Article  Google Scholar 

  25. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191. doi:10.1073/pnas.0602439103

    Article  Google Scholar 

  26. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943. doi:10.1126/science.1152516

    Article  Google Scholar 

  27. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45:67–86. doi:10.1016/s0013-4686(99)00194-2

    Article  Google Scholar 

  28. Eriksson T, Andersson AM, Bishop AG, Gejke C, Tr Gustafsson, Thomas JO (2002) Surface analysis of LiMn[sub 2]O[sub 4] electrodes in carbonate-based electrolytes. J Electrochem Soc 149(1):A69–A78. doi:10.1149/1.1426398

    Article  Google Scholar 

  29. Eshkenazi V, Peled E, Burstein L, Golodnitsky D (2004) XPS analysis of the SEI formed on carbonaceous materials. Solid State Ionics 170:83–91. doi:10.1016/s0167-2738(03)00107-3

    Article  Google Scholar 

  30. L-j Huang, B-j Li, N-f Ren (2016) Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceram Int 42:7246–7252. doi:10.1016/j.ceramint.2016.01.118

    Article  Google Scholar 

  31. Mannan TM, Soares JBP, Berry RM, Hamad WY (2016) In-situ production of polyethylene/cellulose nanocrystal composites. Can J Chem Eng 94:2107–2113. doi:10.1002/cjce.22608

    Article  Google Scholar 

  32. Tang B, Huang S, Fang Y, Hu J, Malonzo C, Truhlar DG, Stein A (2016) Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. J Chem Phys 144:194702–194705. doi:10.1063/1.4948706

    Article  Google Scholar 

  33. Liu Q, Yu L, Wang Y, Ji Y, Horvat J, Cheng ML, Jia X, Wang G (2013) Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg Chem 52:2817–2822. doi:10.1021/ic301579g

    Article  Google Scholar 

  34. Liu Y, Bai J, Ma X, Li J, Xiong S (2014) Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2:14236–14244. doi:10.1039/c4ta02950j

    Article  Google Scholar 

  35. Cherian CT, Sundaramurthy J, Reddy MV, Suresh Kumar P, Mani K, Pliszka D, Sow CH, Ramakrishna S, Chowdari BV (2013) Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material. ACS Appl Mater Interfaces 5:9957–9963. doi:10.1021/am401779p

    Article  Google Scholar 

  36. Worrall SD, Bissett MA, Hirunpinyopas W, Attfield MP, Dryfe RAW (2016) Facile fabrication of metal–organic framework HKUST-1-based rewritable data storage devices. J Mater Chem C 4:8687–8695. doi:10.1039/c6tc03496a

    Article  Google Scholar 

  37. Bissett MA, Kinloch IA, Dryfe RA (2015) Characterization of MoS2-graphene composites for high-performance coin cell supercapacitors. ACS Appl Mater Interfaces 7(31):17388–17398. doi:10.1021/acsami.5b04672

    Article  Google Scholar 

  38. Li Y, Trujillo MA, Fu E, Patterson B, Fei L, Xu Y, Deng S, Smirnov S, Luo H (2013) Bismuth oxide: a new lithium-ion battery anode. J Mater Chem A 1:12123–12127. doi:10.1039/C3TA12655B

    Article  Google Scholar 

  39. Tonti D, MaJ Torralvo, Enciso E, Sobrados I, Sanz J (2008) Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem Mater 20:4783–4790. doi:10.1021/cm702134s

    Article  Google Scholar 

  40. Bustamante EL, Fernandez JL, Zamaro JM (2014) Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J Colloid Interface Sci 424:37–43. doi:10.1016/j.jcis.2014.03.014

    Article  Google Scholar 

  41. Li X, Gao X, Ai L, Jiang J (2015) Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution. Chem Eng J 274:238–246. doi:10.1016/j.cej.2015.03.127

    Article  Google Scholar 

  42. Polat DB, Lu J, Abouimrane A, Keles O, Amine K (2014) Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:10877–10885. doi:10.1021/am405994b

    Article  Google Scholar 

Download references

Acknowledgements

This project is sponsored by the Shanghai University of Engineering Science Innovation Fund for Graduate Students (16KY0404) and the National Natural Science Foundation of China (11602134), and supported by the Shanghai Municipal Education Commission (High-energy Beam Intelligent Processing and Green Manufacturing) and the University of Minnesota Initiative for Renewable Energy and the Environment (IREE). Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from the NSF through the MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohejin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, X., Sun, C. et al. Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. J Mater Sci 52, 3979–3991 (2017). https://doi.org/10.1007/s10853-016-0660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0660-7

Keywords

Navigation