Skip to main content
Log in

Diffusion and reaction mechanism in initial stage of Zn–Al–Mg hot-dip coating: molecular dynamics simulation

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-equilibrium molecular dynamics was used to simulate the diffusion behavior and reaction mechanism of elements at the solid–liquid interface of Zn–2.0Al–1.5Mg coating on Fe matrix at 1300 K. The simulation results showed that the solid–liquid interface was controlled first by diffusion and then by reaction. Analyzing the atomic distribution and atomic number density, it was found that the diffusion depth and diffusion rate were Zn > Mg > Fe > Al, which was consistent with the experimental results. The Al atoms aggregated to form the Fe–Al intermetallic compounds layer, and the Mg atoms aggregated in the Fe–Al intermetallic compounds layer in the form of segregation. Then a short-time simulation at 800 K and 50 ps was carried out, and the results showed that the surface of the Fe matrix would melt, and the Fe atoms first entered the liquid phase, and then, the liquid atoms diffused into the solid phase in the form of occupying vacancies. Through the analysis of common neighbor atoms, it was found that the interdiffusion of Zn and Fe atoms produced Fe–Zn intermetallic compounds Fe3Zn10, which had a typical BCC crystal structure; and the formation of Fe–Al intermetallic compounds layer hindered the further diffusion of Zn atoms. The study results provide a theoretical basis for the diffusion and reaction mechanism of the solid–liquid interface in the initial stage of hot-dip plating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Cai CH, Song RB, Wen ED, Zhang SS (2022) Characterization and control of a new kind of black spot defects on surface of hot-dip galvanized low-aluminum Zn-1.5Al-1.1Mg coatings. Mater Lett 321:132439. https://doi.org/10.1016/j.matlet.2022.132439

    Article  Google Scholar 

  2. Furdanowicz V, Shastry CR (1999) Distribution of aluminum in hot-dip galvanized coatings. Metall Mater Trans A 30:3031–3044. https://doi.org/10.1007/s11661-999-0214-6

    Article  Google Scholar 

  3. Meng Y, Jiang GR, Ju XH, Hao JL (2017) TEM study on the microstructure of the Zn–Al–Mg alloy. Mater Charact 129:336–343. https://doi.org/10.1016/j.matchar.2017.05.011

    Article  CAS  Google Scholar 

  4. Truglas T, Duchoslav J, Riener C et al (2020) Correlative characterization of Zn–Al–Mg coatings by electron microscopy and FIB tomography. Mater Charact 166:101407. https://doi.org/10.1016/j.matchar.2020.110407

    Article  Google Scholar 

  5. Li Q, Zhao YZ, Luo Q, Chen SL, Zhang JY, Chou KC (2010) Experimental study and phase diagram calculation in Al–Zn–Mg–Si quaternary system. J Alloy Compd 501:282–290. https://doi.org/10.1016/j.jallcom.2010.04.089

    Article  CAS  Google Scholar 

  6. Manna M, Dutta M, Bhagat AN (2021) Microstructure and electrochemical performance evaluation of Zn, Zn-5 wt% Al and Zn-20 wt% Al alloy coated steels. J Mater Eng Perform 30:627–637. https://doi.org/10.1007/s11665-020-05359-8

    Article  CAS  Google Scholar 

  7. Yao CZ, Tay SL, Zhu TP, Shang HF, Gao W (2015) Effects of Mg content on microstructure and electrochemical properties of Zn–Al–Mg alloys. J Alloy Compd 645:131–136. https://doi.org/10.1016/j.jallcom.2015.05.010

    Article  CAS  Google Scholar 

  8. Liu W, Li MC, Luo Q et al (2016) Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al–Zn–Si coating in NaCl solution. Corros Sci 104:217–226. https://doi.org/10.1016/j.corsci.2015.12.014

    Article  CAS  Google Scholar 

  9. Liu W, Li Q, Li MC (2017) Corrosion behaviour of hot-dip Al–Zn–Si and Al–Zn–Si–3Mg coatings in NaCl solution. Corros Sci 121:72–83. https://doi.org/10.1016/j.corsci.2017.03.013

    Article  CAS  Google Scholar 

  10. Wang KK, Chang LW, Gan D, Wang HP (2009) Heteroepitaxial growth of Fe2Al5 inhibition layer in hot-dip galvanizing of an interstitial-free steel. Thin Solid Films 518:1935–1942. https://doi.org/10.1016/j.tsf.2009.07.154

    Article  CAS  Google Scholar 

  11. Yokoi H, Takata N, Suzuki A, Kobashi M (2019) Formation sequence of Fe–Al intermetallic phases at interface between solid Fe and liquid Zn–6Al–3Mg alloy. Intermetallics 109:74–84. https://doi.org/10.1016/j.intermet.2019.03.011

    Article  CAS  Google Scholar 

  12. Dybkov VI (1990) Interaction of 18Cr-10Ni stainless steel with liquid aluminum. J Mater Sci 25:3615–3633. https://doi.org/10.1007/bf00575397

    Article  CAS  Google Scholar 

  13. Chen Q, Wang C (1998) Inoculation mechanism of rare earth-Mg alloys in molten cast iron. J Mater Sci 33:985–988. https://doi.org/10.1023/A:1004363828646

    Article  CAS  Google Scholar 

  14. Reiichi O (1986) Rates of dissolution of solid iron, cobalt, nickel, and silicon in liquid copper and diffusion rate of iron from liquid Cu–Fe alloy into liquid copper. Metall Trans B 17:291–305. https://doi.org/10.1007/bf02655076

    Article  Google Scholar 

  15. Barmak K, Dybkov VI (2003) Interaction of iron-chromium alloys containing 10 and 25 mass% chromium with liquid aluminium. J Mater Sci 38:3249–3255. https://doi.org/10.1023/A:1025129803413

    Article  CAS  Google Scholar 

  16. Luo Q, Chen JL, Li Y, Yang F, Li Q, Wu Y, Zhang JY, Chou KC (2012) Experimental study and thermodynamic assessment of the Al–Fe rich side of the Al–Zn–Fe system at 300 and 550 °C. Calphad 37:116–125. https://doi.org/10.1016/j.calphad.2012.02.007

    Article  CAS  Google Scholar 

  17. Zu Q, Guo YF, Xu S, Tang XZ, Wang YS (2016) Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals. Acta Metall Sinica English Lett 29:301–312. https://doi.org/10.1007/s40195-015-0353-2

    Article  CAS  Google Scholar 

  18. Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550:492–495. https://doi.org/10.1038/nature23472

    Article  CAS  Google Scholar 

  19. Agarwal G, Dongare AM (2016) Shock wave propagation and spall failure in single crystal Mg at atomic scales. J Appl Phys 119(14):145901. https://doi.org/10.1063/1.4944942

    Article  Google Scholar 

  20. Yang XY, Xu S, Liu LS (2022) The shock response and spall mechanism of Mg–Al–Zn alloy: molecular dynamics study. Acta Mech Solida Sin 35:495–503. https://doi.org/10.1007/s10338-021-00301-4

    Article  Google Scholar 

  21. Ozgen S, Duruk E (2004) Molecular dynamics simulation of solidification kinetics of aluminium using Sutton-Chen version of EAM. Mater Lett 58:1071–1075. https://doi.org/10.1016/j.matlet.2003.08.019

    Article  CAS  Google Scholar 

  22. Gan XL, Xiao SF, Deng HQ, Li XF, Hu WY (2016) Orientation dependences of the Fe–Li solid-liquid interface properties: atomistic simulations. J Alloy Compd 687:875–884. https://doi.org/10.1016/j.jallcom.2016.06.214

    Article  CAS  Google Scholar 

  23. Fang CM, Fan Z (2020) Atomic ordering at the liquid-Al/MgAl2O4 interfaces from Ab initio molecular dynamics simulations. Metall Mater Trans A 51:6318–6326. https://doi.org/10.1007/s11661-020-05994-9

    Article  CAS  Google Scholar 

  24. Ueno K, Shibuta Y (2020) Solid-liquid interfacial energy for Fe–Cr alloy under temperature gradient from molecular dynamics simulation. ISIJ Int 60:2301–2305. https://doi.org/10.2355/isijinternational.isijint-2019-769

    Article  CAS  Google Scholar 

  25. Sui YW, Cheng C, Feng K et al (2017) Molecular simulation of interfacial reaction between TiAl alloy melts and different coatings. Res Dev 14:205–210. https://doi.org/10.1007/s41230-017-6045-y

    Article  Google Scholar 

  26. Turlo V, Politano O, Baras F (2015) Dissolution process at solid/liquid interface in nanometric metallic multilayers: molecular dynamics simulations versus diffusion modeling. Acta Mater 99:363–372. https://doi.org/10.1016/j.actamat.2015.07.076

    Article  CAS  Google Scholar 

  27. Xu RG, Falk ML, Weihs TP (2013) Interdiffusion of Ni–Al multilayers: a continuum and molecular dynamics study. J Appl Phys 114:16. https://doi.org/10.1063/1.4826527

    Article  Google Scholar 

  28. He JQ, Sun JL, Meng YN, Pei Y, Wu P (2021) Synergistic lubrication effect of Al2O3 and MoS2 nanoparticles confined between iron surfaces: a molecular dynamics study. J Mater Sci 56:9227–9241. https://doi.org/10.1007/s10853-021-05889-z

    Article  CAS  Google Scholar 

  29. Chen XW (1990) Physical chemistry of iron and steel metallurgy. Metallurgical industry press, Beijing, pp 321–326

    Google Scholar 

  30. Xiao XG, Xie GY (1997) Fundamentals of metallurgical reaction engineering. Metallurgical industry press, Beijing: 389

    Google Scholar 

  31. Zou X (1989) Brazing. China machine press, Beijing:144

    Google Scholar 

  32. Dickel DE, Baskes MI, Aslam I, Barrett CD (2018) New interatomic potential for MgAlZn alloys with specific application to dilute Mg-based alloys. Modell Simul Mater Sci Eng 26:045010. https://doi.org/10.1088/1361-651x/aabaad

    Article  CAS  Google Scholar 

  33. Mahata A, Mukhopadhyay T, Zaeem MA (2021) Modified embedded-atom method interatomic potentials for Al–Cu, Al–Fe and Al–Ni binary alloys: from room temperature to melting point. Comput Mater Sci 201:110902. https://doi.org/10.1016/j.commatsci.2021.110902

    Article  Google Scholar 

  34. Halicioglu T, Pound GM (1975) Calculation of potential energy parameters from crystalline state properties. Phys Status Solidi (a) 30:619–623. https://doi.org/10.1002/pssa.2210300223

    Article  CAS  Google Scholar 

  35. Xie YY, Du A, Zhao X, Ma RN, Fan YZ, Cao XM (2018) Effect of Mg on Fe–Al interface structure of hot-dip galvanized Zn–Al–Mg alloy coatings. Surf Coat Technol 337:313–320. https://doi.org/10.1016/j.surfcoat.2018.01.038

    Article  CAS  Google Scholar 

  36. Hong JH, Oh SJ, Kwon SJ (2003) Mössbauer analysis of the iron-zinc intermetallic phases. Intermetallics 11:207–213. https://doi.org/10.1016/s0966-9795(02)00191-7

    Article  CAS  Google Scholar 

  37. Han K, Lee I, Ohnuma I, Kainuma R (2021) Formation and growth behavior of intermetallic compound phases in the interfacial reaction of solid Fe/liquid Zn at 450 °C. J Alloys Compd 888:161562. https://doi.org/10.1016/j.jallcom.2021.161562

    Article  CAS  Google Scholar 

  38. Pang YP, Sun DK, Gu QF, Chou KC, Wang XL, Li Q (2016) Comprehensive determination of kinetic parameters in solid-state phase transitions: an extended Jonhson-Mehl-Avrami-Kolomogorov model with analytical solutions. Cryst Growth Des 16:2404–2415. https://doi.org/10.1021/acs.cgd.6b00187

    Article  CAS  Google Scholar 

  39. Luo Q, Guo YL, Liu B, Feng YJ, Zhang JY, Li Q, Chou KC (2020) Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: a critical review. J Mater Sci Technol 44:171–190. https://doi.org/10.1016/j.jmst.2020.01.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renbo Song.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Ghanshyam Pilania.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Song, R., Cai, C. et al. Diffusion and reaction mechanism in initial stage of Zn–Al–Mg hot-dip coating: molecular dynamics simulation. J Mater Sci 58, 2647–2659 (2023). https://doi.org/10.1007/s10853-023-08188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08188-x

Navigation