Skip to main content

Advertisement

Log in

A review of self-healable natural rubber based on reversible bonds: fundamental, design principle and performance

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Natural rubber is one of nature’s most exceptional materials due to its remarkable physicochemical properties. Comparing natural and synthetic rubbers, natural rubber possesses greater performance properties, such as green strength, tear strength, tensile strength, tensile modulus and toughness. Inspired by nature, self-healing materials are attractive materials due to the capability to automatically self-heal or self-repair when damage occurs. Self-healing natural rubber is a current evolution of elastomers that could offer new properties of recycling and reprocessing ability of rubber products for environmental conservation. Furthermore, it increases the value of natural rubber as a good sustainable material in daily life. Significant efforts have been made to develop high self-healing efficiency and high mechanical performance; however, being excellent in both criteria is uncommon. This review focuses on the principle of material design that was implemented to obtain the self-healing capability of natural rubber from the combination of covalent and non-covalent bonds to obtain an optimal balance between mechanical strength and healing ability. This article also covers the methods that can be applied for self-healing testing and other important characterizations. Potential applications and challenges of self-healing rubber were also discussed. Synthetic rubbers were included in this review for comparison and future strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Copyright 2017, Advanced Energy Materials)

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Copyright 2016, American Chemical Society)

Figure 10

Copyright 2019, Elsevier)

Figure 11

Copyright 2015, Royal Chemistry)

Figure 12

Copyright 2019, Elsevier)

Figure 13

Copyright 2019, Carbohydrate Polymer)

Figure 14

Copyright 2020, American Chemical Society)

Figure 15

Copyright 2019, American Chemical Society)

Figure 16

(Reproduced with permission from reference [85]. Copyright 2019, American Chemical Society)

Figure 17

Copyright 2008, Elsevier)

Figure 18

(Reproduced with permission from reference [25]. Copyright 2013, American Chemical Society)

Figure 19

(Reproduced with permission from reference [32]. Copyright 2019, Elsevier Ltd.)

Similar content being viewed by others

References

  1. Kovuttikulrangsie S, Sakdapipanich JT (2005) The molecular weight (MW) and molecular weight distribution (MWD) of NR from different age and clone Hevea trees. Songklanakarin J Sci Technol 27(2):337–342

    CAS  Google Scholar 

  2. Hofer R (ed) (2009) Sustainable solutions for modern economies. Royal Society of Chemistry, London. https://doi.org/10.1039/9781847552686

    Book  Google Scholar 

  3. Sriring M, Nimpaiboon A, Kumarn S, Sirisinha C, Sakdapipanich J, Toki S (2018) Viscoelastic and mechanical properties of large-and small-particle natural rubber before and after vulcanization. Polym Test 70:127–134. https://doi.org/10.1016/j.polymertesting.2018.06.026

    Article  CAS  Google Scholar 

  4. Yip E, Cacioli P (2002) The manufacture of gloves from natural rubber latex. J Allergy Clin Immunol 110(2):S3–S14. https://doi.org/10.1067/mai.2002.124499

    Article  CAS  Google Scholar 

  5. Hashim AS, Ong SK (2017) Natural rubber and its derivatives. In: Elastomers. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.69661

  6. Phanny Y, Azura R, Ismail H (2013) Effect of different origins of natural rubber on the properties of carbon black filled natural rubber composites. ASEAN Eng J 2(1):60–67

    Google Scholar 

  7. Hernández Santana M, den Brabander M, García S, Van der Zwaag S (2018) Routes to make natural rubber heal: a review. Polym Rev 58(4):585–609. https://doi.org/10.1080/15583724.2018.1454947

    Article  CAS  Google Scholar 

  8. Zhang ZF, Yang K, Zhao SG, Guo LN (2019) Self-healing behavior of ethylene propylene diene rubbers based on ionic association. Chin J Polym Sci 37(7):700–707

    Article  CAS  Google Scholar 

  9. Distribution of natural rubber exports based on value in 2021, by country. https://www.therubbereconomist.com/nr-production. Accessed 24 July 2020. https://www.statista.com/statistics/652796/distribution-of-the-leading-natural-rubber-exporters/. Accessed 2 Dec 2022. https://doi.org/10.1007/s10118-019-2241-0

  10. Hytönen J, Nurmi J, Kaakkurivaara N, Kaakkurivaara T (2019) Rubber tree (Hevea brasiliensis) biomass, nutrient content, and heating values in southern Thailand. Forests 10(8):638. https://doi.org/10.3390/f10080638

    Article  Google Scholar 

  11. Monthly Rubber Statistics Malaysia (2021) https://www.dosm.gov.my/v1/index.php?r=column/ctwoByCat&parent_id=45&menu_id=Z0VTZGU1UHBUT1VJMFlpaXRRR0xpdz09. Accessed 15 Apr 2021

  12. Rubber, Natural. https://ihsmarkit.com/products/natural-rubber-chemical-economics-handbook.html. Accessed 21 June 2021

  13. Association of Natural Rubber Producing Countries. http://www.anrpc.org/html/news-secretariat.aspx?ID=9&PID=39. Accessed 15 June 2021

  14. Cheng B, Lu X, Zhou J, Qin R, Yang Y (2019) Dual cross-linked self-healing and recyclable epoxidized natural rubber based on multiple reversible effects. ACS Sustain Chem Eng 7(4):4443–4455. https://doi.org/10.1021/acssuschemeng.8b06437

    Article  CAS  Google Scholar 

  15. Chino K, Ashiura M (2001) Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 34(26):9201–9204. https://doi.org/10.1021/ma011253v

    Article  CAS  Google Scholar 

  16. Imbernon L, Oikonomou EK, Norvez S, Leibler L (2015) Chemically crosslinked yet reprocessable epoxidized natural rubber via thermo-activated disulfide rearrangements. Polym Chem 6(23):4271–4278. https://doi.org/10.1039/C5PY00459D

    Article  CAS  Google Scholar 

  17. Xu C, Nie J, Wu W, Fu L, Lin B (2019) Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan. Carbohyd Polym 205:410–419. https://doi.org/10.1016/j.carbpol.2018.10.080

    Article  CAS  Google Scholar 

  18. Xu C, Cao L, Huang X, Chen Y, Lin B, Fu L (2017) Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network. ACS Appl Mater Interfaces 9(34):29363–29373. https://doi.org/10.1021/acsami.7b09997

    Article  CAS  Google Scholar 

  19. Chen Y, Tang Z, Zhang X, Liu Y, Wu S, Guo B (2018) Covalently cross-linked elastomers with self-healing and malleable abilities enabled by boronic ester bonds. ACS Appl Mater Interfaces 10(28):24224–24231. https://doi.org/10.1021/acsami.8b09863

    Article  CAS  Google Scholar 

  20. Brás AR, Antonius W, Pyckhout-Hintzen W, Allgaier J (2012) Self-healing Elastomers using supramolecular approaches. KGK Kautsch Gummi Kunstst 65(4):16–23

    Google Scholar 

  21. Chittella H, Yoon LW, Ramarad S, Lai ZW (2021) Rubber waste management: a review on methods, mechanism, and prospects. Polym Degrad Stab 194:109761. https://doi.org/10.1016/j.polymdegradstab.2021.109761

    Article  CAS  Google Scholar 

  22. Utrera-Barrios S, Hernández Santana M, Verdejo R, López-Manchado MA (2020) Design of rubber composites with autonomous self-healing capability. ACS Omega 5(4):1902–1910. https://doi.org/10.1021/acsomega.9b03516

    Article  CAS  Google Scholar 

  23. Liu Y, Li Z, Liu R, Liang Z, Yang J, Zhang R, Zhou Z, Nie Y (2019) Design of self-healing rubber by introducing ionic interaction to construct a network composed of ionic and covalent cross-linking. Ind Eng Chem Res 58(32):14848–14858. https://doi.org/10.1021/acs.iecr.9b02972

    Article  CAS  Google Scholar 

  24. Xu C, Cao L, Lin B, Liang X, Chen Y (2016) Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Appl Mater Interfaces 8(27):17728–17737. https://doi.org/10.1021/acsami.6b05941

    Article  CAS  Google Scholar 

  25. Rahman MA, Sartore L, Bignotti F, Di Landro L (2013) Autonomic self-healing in epoxidized natural rubber. ACS Appl Mater Interfaces 5(4):1494–1502. https://doi.org/10.1021/am303015e

    Article  CAS  Google Scholar 

  26. Xu C, Nie J, Wu W, Zheng Z, Chen Y (2019) Self-healable, recyclable, and strengthened epoxidized natural rubber/carboxymethyl chitosan biobased composites with hydrogen bonding supramolecular hybrid networks. ACS Sustain Chem Eng 7(18):15778–15789. https://doi.org/10.1021/acssuschemeng.9b04324

    Article  CAS  Google Scholar 

  27. Thajudin NLN, Sardi NS, Zainol MH, Shuib RK (2019) Room temperature self-healable natural rubber. J Rubber Res 22(4):203–211. https://doi.org/10.1007/s42464-019-00025-8

    Article  CAS  Google Scholar 

  28. Hia IL, Vahedi V, Pasbakhsh P (2016) Self-healing polymer composites: prospects, challenges, and applications. Polym Rev 56(2):225–261. https://doi.org/10.1080/15583724.2015.1106555

    Article  CAS  Google Scholar 

  29. Wemyss AM, Bowen C, Plesse C, Vancaeyzeele C, Nguyen GT, Vidal F, Wan C (2020) Dynamic crosslinked rubbers for a green future: a material perspective. Mater Sci Eng R Rep 141:100561. https://doi.org/10.1016/j.mser.2020.100561

    Article  Google Scholar 

  30. Billiet S, Hillewaere XK, Teixeira RF, Du Prez FE (2013) Chemistry of crosslinking processes for self-healing polymers. Macromol Rapid Commun 34(4):290–309. https://doi.org/10.1002/marc.201200689

    Article  CAS  Google Scholar 

  31. Cao L, Yuan D, Xu C, Chen Y (2017) Biobased, self-healable, high strength rubber with tunicate cellulose nanocrystals. Nanoscale 9(40):15696–15706. https://doi.org/10.1039/C7NR05011A

    Article  CAS  Google Scholar 

  32. Nie J, Mou W, Ding J, Chen Y (2019) Bio-based epoxidized natural rubber/chitin nanocrystals composites: self-healing and enhanced mechanical properties. Compos B Eng 172:152–160. https://doi.org/10.1016/j.compositesb.2019.04.035

    Article  CAS  Google Scholar 

  33. Li W, Zhang L, Zhu Y, Wu J (2022) Self-healing elastomers. In: Recent advances in smart self-healing polymers and composites, pp 271–304

  34. Amaral AJ, Pasparakis G (2017) Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym Chem 8(42):6464–6484. https://doi.org/10.1039/C7PY01386H

    Article  CAS  Google Scholar 

  35. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980. https://doi.org/10.1038/nature06669

    Article  CAS  Google Scholar 

  36. Wang Z, Lu X, Sun S, Yu C, Xia H (2019) Preparation, characterization and properties of intrinsic self-healing elastomers. J Mater Chem B 7(32):4876–4926. https://doi.org/10.1039/C9TB00831D

    Article  CAS  Google Scholar 

  37. Zhu M, Liu J, Gan L, Long M (2020) Research progress in bio-based self-healing materials. Eur Polym J 129:109651. https://doi.org/10.1016/j.eurpolymj.2020.109651

    Article  CAS  Google Scholar 

  38. Rahman MA, Penco M, Peroni I, Ramorino G, Janszen G, Di Landro L (2012) Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers. Smart Mater Struct 21(3):035014. https://doi.org/10.1088/0964-1726/21/3/035014

    Article  CAS  Google Scholar 

  39. Sordo F, Mougnier SJ, Loureiro N, Tournilhac F, Michaud V (2015) Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links. Macromolecules 48(13):4394–4402. https://doi.org/10.1021/acs.macromol.5b00747

    Article  CAS  Google Scholar 

  40. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797. https://doi.org/10.1038/35057232

    Article  CAS  Google Scholar 

  41. Dhanasekaran R, Reddy SS, Kumar AS (2018) Application of self-healing polymers to overcome impact, fatigue and erosion damages. Mater Today: Proc 5(10):21373–21377. https://doi.org/10.1016/j.matpr.2018.06.542

    Article  CAS  Google Scholar 

  42. Atwood JL, Steed JW (2009) Supramolecular chemistry. Wiley, New York, pp 27–36

    Google Scholar 

  43. Chen D, Wang D, Yang Y, Huang Q, Zhu S, Zheng Z (2017) Self-healing materials for next-generation energy harvesting and storage devices. Adv Energy Mater 7(23):1700890. https://doi.org/10.1002/aenm.201700890

    Article  CAS  Google Scholar 

  44. do Nascimento AA (2021) Self-healing polymers and composite materials. In: Fiber-reinforced plastics. IntechOpen. https://doi.org/10.5772/intechopen.100908

  45. Xu C, Cui R, Fu L, Lin B (2018) Recyclable and heat-healable epoxidized natural rubber/bentonite composites. Compos Sci Technol 167:421–430. https://doi.org/10.1016/j.compscitech.2018.08.027

    Article  CAS  Google Scholar 

  46. Xu Y, Chen D (2016) A novel self-healing polyurethane based on disulfide bonds. Macromol Chem Phys 217(10):1191–1196. https://doi.org/10.1002/macp.201600011

    Article  CAS  Google Scholar 

  47. Xu C, Huang X, Li C, Chen Y, Lin B, Liang X (2016) Design of “Zn2+ salt-bondings” cross-linked carboxylated styrene butadiene rubber with reprocessing and recycling ability via rearrangements of ionic cross-linkings. ACS Sustain Chem Eng 4(12):6981–6990. https://doi.org/10.1021/acssuschemeng.6b01897

    Article  CAS  Google Scholar 

  48. Peng Y, Yang Y, Wu Q, Wang S, Huang G, Wu J (2018) Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer 157:172–179. https://doi.org/10.1016/j.polymer.2018.09.038

    Article  CAS  Google Scholar 

  49. Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K (2012) Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater 24(29):3975–3980. https://doi.org/10.1002/adma.201201928

    Article  CAS  Google Scholar 

  50. Sanka RSP, Krishnakumar B, Leterrier Y, Pandey S, Rana S, Michaud V (2019) Soft self-healing nanocomposites. Front Mater 6:137. https://doi.org/10.3389/fmats.2019.00137

    Article  Google Scholar 

  51. Liu J, Xiao C, Tang J, Liu Y, Hua J (2020) Construction of a dual ionic network in natural rubber with high self-healing efficiency through anionic mechanism. Ind Eng Chem Res 59(28):12755–12765. https://doi.org/10.1021/acs.iecr.0c01538

    Article  CAS  Google Scholar 

  52. Thajudin NLN, Zainol MH, Shuib RK (2021) Intrinsic room temperature self-healing natural rubber based on metal thiolate ionic network. Polym Testing 93:106975. https://doi.org/10.1016/j.polymertesting.2020.106975

    Article  CAS  Google Scholar 

  53. Wang L, Cheng L, Li G, Liu K, Zhang Z, Li P, Dong S, Yu W, Huang F, Yan X (2020) A self-cross-linking supramolecular polymer network enabled by crown-ether-based molecular recognition. J Am Chem Soc 142(4):2051–2058. https://doi.org/10.1021/jacs.9b12164

    Article  CAS  Google Scholar 

  54. Tanasi P, Santana MH, Carretero-González J, Verdejo R, López-Manchado MA (2019) Thermo-reversible crosslinked natural rubber: a Diels–Alder route for reuse and self-healing properties in elastomers. Polymer 175:15–24. https://doi.org/10.1016/j.polymer.2019.04.059

    Article  CAS  Google Scholar 

  55. Jia Z, Zhu S, Chen Y, Zhang W, Zhong B, Jia D (2020) Recyclable and self-healing rubber composites based on thermorevesible dynamic covalent bonding. Compos A Appl Sci Manuf 129:105709. https://doi.org/10.1016/j.compositesa.2019.105709

    Article  CAS  Google Scholar 

  56. Polgar LM, Van Duin M, Broekhuis AA, Picchioni F (2015) Use of Diels–Alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? Macromolecules 48(19):7096–7105. https://doi.org/10.1021/acs.macromol.5b01422

    Article  CAS  Google Scholar 

  57. Hernández M, Grande AM, Dierkes W, Bijleveld J, Van Der Zwaag S, García SJ (2016) Turning vulcanized natural rubber into a self-healing polymer: effect of the disulfide/polysulfide ratio. ACS Sustain Chem Eng 4(10):5776–5784. https://doi.org/10.1021/acssuschemeng.6b01760

    Article  CAS  Google Scholar 

  58. Xiang HP, Qian HJ, Lu ZY, Rong MZ, Zhang MQ (2015) Crack healing and reclaiming of vulcanized rubber by triggering the rearrangement of inherent sulfur crosslinked networks. Green Chem 17(8):4315–4325. https://doi.org/10.1039/C5GC00754B

    Article  CAS  Google Scholar 

  59. Xu J, Ding C, Chen P, Tan L, Chen C, Fu J (2020) Intrinsic self-healing polymers for advanced lithium-based batteries: advances and strategies. Appl Phys Rev 7(3):031304. https://doi.org/10.1063/5.0008206

    Article  CAS  Google Scholar 

  60. Varshey DB, Sander JR, Friščić T, MacGillivray LR (2012). Supramolecular interactions. In Supramolecular chemistry: from molecules to nanomaterials. Wiley, New York, pp 1−16. https://doi.org/10.1002/9780470661345.smc003

  61. Rossow T, Seiffert S (2015) Supramolecular polymer networks: preparation, properties, and potential. Supramol Polym Netw Gels. https://doi.org/10.1007/978-3-319-15404-6_1

    Article  Google Scholar 

  62. Utrera-Barrios S, Verdejo R, López-Manchado MA, Santana MH (2020) Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater Horiz 7(11):2882–2902. https://doi.org/10.1039/D0MH00535E

    Article  CAS  Google Scholar 

  63. Dahlke J, Zechel S, Hager MD, Schubert US (2018) How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Adv Mater Interfaces 5(17):1800051. https://doi.org/10.1002/admi.201800051

    Article  Google Scholar 

  64. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7(37):20623–20630. https://doi.org/10.1021/acsami.5b05041

    Article  CAS  Google Scholar 

  65. Sattar MA, Gangadharan S, Patnaik A (2019) Design of dual hybrid network natural rubber–SiO2 elastomers with tailored mechanical and self-healing properties. ACS Omega 4(6):10939–10949. https://doi.org/10.1021/acsomega.9b01243

    Article  CAS  Google Scholar 

  66. Khimi SR, Syamsinar SN, Najwa TNL (2019) Effect of carbon black on self-healing efficiency of natural rubber. Mater Today: Proc 17:1064–1071. https://doi.org/10.1016/j.matpr.2019.06.513

    Article  CAS  Google Scholar 

  67. Stein S, Mordvinkin A, Voit B, Komber H, Saalwächter K, Böhme F (2020) Self-healing and reprocessable bromo butylrubber based on combined ionic cluster formation and hydrogen bonding. Polym Chem 11(6):1188–1197. https://doi.org/10.1039/C9PY01630A

    Article  CAS  Google Scholar 

  68. Sallat A, Das A, Schaber J, Scheler U, Bhagavatheswaran ES, Stöckelhuber KW, Heinrich G, Voit B, Böhme F (2018) Viscoelastic and self-healing behavior of silica filled ionically modified poly (isobutylene-co-isoprene) rubber. RSC Adv 8(47):26793–26803. https://doi.org/10.1039/C8RA04631J

    Article  CAS  Google Scholar 

  69. Xiang HP, Rong MZ, Zhang MQ (2016) Self-healing, reshaping, and recycling of vulcanized chloroprene rubber: a case study of multitask cyclic utilization of cross-linked polymer. ACS Sustain Chem Eng 4(5):2715–2724. https://doi.org/10.1021/acssuschemeng.6b00224

    Article  CAS  Google Scholar 

  70. Xiang H, Yin J, Lin G, Liu X, Rong M, Zhang M (2019) Photo-crosslinkable, self-healable and reprocessable rubbers. Chem Eng J 358:878–890. https://doi.org/10.1016/j.cej.2018.10.103

    Article  CAS  Google Scholar 

  71. Grabowski SJ (ed) (2006) Hydrogen bonding: new insights, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4853-1

    Book  Google Scholar 

  72. Gonzales-Fernandes M, Bastos AC, Esper FJ, Valenzuela-Diaz FR, Wiebeck H (2016) Improvement of mechanical properties in natural rubber with organic fillers. In: Characterization of minerals, metals, and materials 2016. Springer, Cham, pp 623–627. https://doi.org/10.1007/978-3-319-48210-1_78

  73. Velu C (2015) Influence of different fillers on natural rubber composites to assess mechanical performance. Int J Eng 28(6):932–939

    Google Scholar 

  74. Wang X, Liang D, Cheng B (2020) Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond. Compos Sci Technol 193:108127. https://doi.org/10.1016/j.compscitech.2020.108127

    Article  CAS  Google Scholar 

  75. Li CH, Zuo JL (2020) Self-healing polymers based on coordination bonds. Adv Mater 32(27):1903762. https://doi.org/10.1002/adma.201903762

    Article  CAS  Google Scholar 

  76. Canadell J, Goossens H, Klumperman B (2011) Self-healing materials based on disulfide links. Macromolecules 44(8):2536–2541. https://doi.org/10.1021/ma2001492

    Article  CAS  Google Scholar 

  77. Chang K, Jia H, Gu SY (2019) A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds. Eur Polym J 112:822–831. https://doi.org/10.1016/j.eurpolymj.2018.11.005

    Article  CAS  Google Scholar 

  78. Baire B, Niu D, Willoughby PH, Woods BP, Hoye TR (2013) Synthesis of complex benzenoids via the intermediate generation of o-benzynes through the hexadehydro-Diels–Alder reaction. Nat Protoc 8(3):501–508. https://doi.org/10.1038/nprot.2013.017

    Article  CAS  Google Scholar 

  79. Liu YL, Chuo TW (2013) Self-healing polymers based on thermally reversible Diels–Alder chemistry. Polym Chem 4(7):2194–2205. https://doi.org/10.1039/C2PY20957H

    Article  CAS  Google Scholar 

  80. Wu Y, Yan C, Wang Y, Gao C, Liu Y (2021) Biomimetic structure of chitosan reinforced epoxy natural rubber with self-healed, recyclable and antimicrobial ability. Int J Biol Macromol 184:9–19. https://doi.org/10.1016/j.ijbiomac.2021.06.037

    Article  CAS  Google Scholar 

  81. Kuang X, Liu G, Dong X, Wang D (2016) Enhancement of mechanical and self-healing performance in multiwall carbon nanotube/rubber composites via Diels–Alder bonding. Macromol Mater Eng 301(5):535–541. https://doi.org/10.1002/mame.201500425

    Article  CAS  Google Scholar 

  82. Li C, Wang Y, Yuan Z, Ye L (2019) Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement. Appl Surf Sci 484:616–627. https://doi.org/10.1016/j.apsusc.2019.04.064

    Article  CAS  Google Scholar 

  83. Suckow M, Mordvinkin A, Roy M, Singha NK, Heinrich G, Voit B, Saalwächter K, Böhme F (2017) Tuning the properties and self-healing behavior of ionically modified poly (isobutylene-co-isoprene) rubber. Macromolecules 51(2):468–479. https://doi.org/10.1021/acs.macromol.7b02287

    Article  CAS  Google Scholar 

  84. Suki FMM, Rashid AA (2017). Effect of dispersion preparation technique of calcium carbonate (CaCO3) fillers on mechanical properties of natural rubber (NR) latex films. In: AIP conference proceedings, vol 1865, no 1, p 040015. AIP Publishing LLC. https://doi.org/10.1063/1.4993357

  85. Liu Y, Zhang K, Sun J, Yuan J, Yang Z, Gao C, Wu Y (2019) A type of hydrogen bond cross-linked silicone rubber with the thermal-induced self-healing properties based on the nonisocyanate reaction. Ind Eng Chem Res 58(47):21452–21458. https://doi.org/10.1021/acs.iecr.9b03953

    Article  CAS  Google Scholar 

  86. Rahman MA, Penco M, Peroni I, Ramorino G, Grande AM, Di Landro L (2011) Self-repairing systems based on ionomers and epoxidized natural rubber blends. ACS Appl Mater Interfaces 3(12):4865–4874. https://doi.org/10.1021/am201417h

    Article  CAS  Google Scholar 

  87. Varley RJ, van der Zwaag S (2008) Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym Test 27(1):11–19. https://doi.org/10.1016/j.polymertesting.2007.07.013

    Article  CAS  Google Scholar 

  88. Bode S, Enke M, Hernandez M, Bose RK, Grande AM, van der Zwaag S, Schubert US, Garcia SJ, Hager MD (2015) Characterization of self-healing polymers: from macroscopic healing tests to the molecular mechanism. Self-Heal Mater. https://doi.org/10.1007/12_2015_341

    Article  Google Scholar 

  89. Ariyawiriyanan W, Nuinu J, Sae-heng K, Kawahara S (2013) The mechanical properties of vulcanized deproteinized natural rubber. Energy Procedia 34:728–733. https://doi.org/10.1016/j.egypro.2013.06.806

    Article  CAS  Google Scholar 

  90. Khorasani SN, Neisiany RE (2020) Characterization of self-healing polymeric materials. In: Self-healing polymer-based systems. Elsevier, pp 123–140. https://doi.org/10.1016/B978-0-12-818450-9.00005-2

  91. Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43(23):8114–8131. https://doi.org/10.1039/C4CS00219A

    Article  CAS  Google Scholar 

  92. Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6):1906–1912. https://doi.org/10.1021/ma8027672

    Article  CAS  Google Scholar 

  93. Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder WH (2014) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23(4):045001. https://doi.org/10.1088/0964-1726/23/4/045001

    Article  CAS  Google Scholar 

  94. Rhaman MA, Penco M, Spagnoli G, Grande AM, Di Landro L (2011) Self-healing behavior of blends based on ionomers with ethylene/vinyl alcohol copolymer or epoxidized natural rubber. Macromol Mater Eng 296(12):1119–1127. https://doi.org/10.1002/mame.201100056

    Article  CAS  Google Scholar 

  95. Feng Z, Hu J, Zuo H, Ning N, Zhang L, Yu B, Tian M (2018) Photothermal-induced self-healable and reconfigurable shape memory bio-based elastomer with recyclable ability. ACS Appl Mater Interfaces 11(1):1469–1479. https://doi.org/10.1021/acsami.8b18002

    Article  CAS  Google Scholar 

  96. Edjenguele A, Nkayem EN, Nkengafac NJ (2021) Evaluation of self healing polymer and rubber composites: a brief review of recent achievements. Am J Polym Sci Technol 7(4):64–72. https://doi.org/10.11648/j.ajpst.20210704.13

    Article  Google Scholar 

  97. Bekas DG, Tsirka K, Baltzis D, Paipetis AS (2016) Self-healing materials: a review of advances in materials, evaluation, characterization and monitoring techniques. Compos B Eng 87:92–119. https://doi.org/10.1016/j.compositesb.2015.09.057

    Article  CAS  Google Scholar 

  98. Brancart J, Scheltjens G, Muselle T, Van Mele B, Terryn H, Van Assche G (2014) Atomic force microscopy–based study of self-healing coatings based on reversible polymer network systems. J Intell Mater Syst Struct 25(1):40–46. https://doi.org/10.1177/1045389X12457100

    Article  CAS  Google Scholar 

  99. Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24(16):2322–2333. https://doi.org/10.1002/adfm.201303013

    Article  CAS  Google Scholar 

  100. Lowe SE, Zhong YL (2016) Challenges of industrial-scale graphene oxide production. Graphene Oxide Fundam Appl. https://doi.org/10.1002/9781119069447.ch13

    Article  Google Scholar 

  101. Cao L, Fan J, Huang J, Chen Y (2019) A robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J Mater Chem A 7(9):4922–4933. https://doi.org/10.1039/C8TA11587G

    Article  CAS  Google Scholar 

  102. Zhou Y, Li L, Han Z, Li Q, He J, Wang Q (2022) Self-HEALING POLYMERS FOR ELECTRONICS AND ENERGY DEvices. Chem Rev. https://doi.org/10.1021/acs.chemrev.2c00231

    Article  Google Scholar 

  103. Yu T, Shan Y, Li Z, Wang X, Cui H, Yang K, Cui Y (2021) Application of a super-stretched self-healing elastomer based on methyl vinyl silicone rubber for wearable electronic sensors. Polym Chem 12(42):6145–6153. https://doi.org/10.1039/D1PY01089A

    Article  CAS  Google Scholar 

  104. Yue H, Wang Z, Zhen Y (2022) Recent advances of self-healing electronic materials applied in organic field-effect transistors. ACS Omega. https://doi.org/10.1021/acsomega.2c00580

    Article  Google Scholar 

  105. Habib S, Khan A, Nawaz M, Sliem MHR, Shakoor RA, Kahraman R, Abdullah AM, Zekri A (2019) Self-healing performance of multifunctional polymeric smart coatings. Polymers 11(9):1519. https://doi.org/10.3390/polym11091519

    Article  CAS  Google Scholar 

  106. Terryn S, Brancart J, Lefeber D, Van Assche G, Vanderborght B (2017) Self-healing soft pneumatic robots. Sci Robot 2(9):eaan4268. https://doi.org/10.1126/scirobotics.aan426

    Article  Google Scholar 

  107. Roy K, Debnath SC, Pongwisuthiruchte A, Potiyaraj P (2019) Natural rubber/microcrystalline cellulose composites with epoxidized natural rubber as compatibilizer. Rubber Chem Technol 92(2):378–387. https://doi.org/10.5254/rct.19.81533

    Article  CAS  Google Scholar 

  108. Dileep P, Varghese GA, Sivakumar S, Narayanankutty SK (2020) An innovative approach to utilize waste silica fume from zirconia industry to prepare high performance natural rubber composites for multi-functional applications. Polym Test 81:106172. https://doi.org/10.1016/j.polymertesting.2019.106172

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports by the Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education Malaysia (FRGS/1/2019/STG01/UPM/02/7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norizah Abdul Rahman.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Kanafi, N., Abdul Ghani, A., Abdul Rahman, N. et al. A review of self-healable natural rubber based on reversible bonds: fundamental, design principle and performance. J Mater Sci 58, 608–635 (2023). https://doi.org/10.1007/s10853-022-08062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08062-2

Navigation