Skip to main content
Log in

Substituted polythiophene-based sensor for detection of ammonia in gaseous and aqueous environment

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This manuscript presents the preparation of polymer layers based on polythiophene (PTh) and its 3-substituted derivatives (substituents 4-(CH3O)C6H4 and 4-(CF3)C6H4 marked as PThOCH3 and PThCF3, respectively) on platinum electrodes by cyclic voltammetry (CV). The polymerization process and the morphology of resulting layers were discussed analysing of CV-voltammograms and scanning electron microscopy (SEM), respectively. Subsequently, the prepared polymers were tested as active/sensitive media of two types of sensors: (i) electrochemical sensor detecting ammonia in aqueous environment, whose response was evaluated by electrochemical impedance spectroscopy (EIS); (ii) chemiresistor detecting NH3 in atmosphere, whose response was evaluated by measurement of resistance. It was found that both the physical (morphology, homogeneity, relative thickness) and receptor properties of the polymer layer deposited on electrode surface are significantly affected by the nature of substituent attached to the thiophene ring. The mutual context of ammonia detection in both environments is discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang Y, Liu A, Han Y, Li T (2020) Sensors based on conductive polymers and their composites: a review. Polym Int 69:7–17. https://doi.org/10.1002/pi.5907

    Article  CAS  Google Scholar 

  2. Wong YC, Ang BC, Haseeb ASMA, Baharuddin AA, Wong YH (2019) Review - conducting polymers as chemiresistive gas sensing materials: a review. J Electrochem Soc 167:037503. https://doi.org/10.1149/2.0032003JES

    Article  Google Scholar 

  3. Lan R, Tao S (2014) Ammonia as a suitable fuel for fuel cells. Front Energy Res 2:35. https://doi.org/10.3389/fenrg.2014.00035

    Article  Google Scholar 

  4. Appl M (2011) Ammonia, 1. Introdution. In: Ullmann's encyclopedia of industrial chemistry, 7th edn. Wiley-VCH, Germany https://doi.org/10.1002/14356007.a02_143.pub3

  5. Meulenbelt J (2007) Ammon Med 35:583–584. https://doi.org/10.1016/j.mpmed.2007.08.004

    Article  Google Scholar 

  6. Ammonia exposure limits in the United Kingdom: https://www.hse.gov.uk/pUbns/priced/eh40.pdf. Accessed 20 Apr 2020

  7. Ammonia exposure limits in the Czech Republic: https://www.irz.cz/repository/latky/amoniak.pdf. Accessed 15 Apr 2020

  8. https://www.tfi.org/sites/default/files/documents/HealthAmmoniaFINAL.pdf. Accessed 7 Apr 2020

  9. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/455704/Ammonia_TO_PHE_240815.pdf. Accessed 20 Apr 2020

  10. Aarya S, Kumar Y, Chahota RK (2020) Recent advances in materials, parameters, performance and technology in ammonia sensors: a review. J Inorg Organomet Polym Mater 30:269–290. https://doi.org/10.1007/s10904-019-01208-x

    Article  CAS  Google Scholar 

  11. Timmer B, Olthuis W, Avd B (2005) Ammonia sensors and their applications - a review. Sens Actuators B Chem 107:666–677. https://doi.org/10.1016/j.snb.2004.11.054

    Article  CAS  Google Scholar 

  12. Tanguy NR, Thompson M, Yan N (2018) A review on advances in application of polyaniline for ammonia detection. Sens Actuators B Chem 257:1044–1064. https://doi.org/10.1016/j.snb.2017.11.008

    Article  CAS  Google Scholar 

  13. Šetka M, Drbohlavová J, Hubálek J (2017) Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors 17:562. https://doi.org/10.3390/s17030562

    Article  CAS  Google Scholar 

  14. Guernion NJL, Hayes W (2004) 3- and 3,4-substituted pyrroles and thiophenes and their corresponding polymers - a review. Curr Org Chem 8:637–651. https://doi.org/10.2174/1385272043370771

    Article  CAS  Google Scholar 

  15. Li C, Shi G (2013) Polythiophene-based optical sensors for small molecules. ACS App Mater Interfaces 5:4503–4510. https://doi.org/10.1021/am400009d

    Article  CAS  Google Scholar 

  16. Huynh T-P, Sharma PS, Sosnowska M, D’Souza F, Kutner W (2015) Functionalized polythiophenes: recognition materials for chemosensors and biosensors of superior sensitivity, selectivity, and detectability. Prog Polym Sci 47:1–25. https://doi.org/10.1016/j.progpolymsci.2015.04.009

    Article  CAS  Google Scholar 

  17. Kwak D, Lei Y, Maric R (2019) Ammonia gas sensors: a comprehensive review. Talanta 204:713–730. https://doi.org/10.1016/j.talanta.2019.06.034

    Article  CAS  Google Scholar 

  18. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3:524–549. https://doi.org/10.3390/nano3030524

    Article  CAS  Google Scholar 

  19. Bai H, Shi G (2007) Gas sensors based on conducting polymers. Sensors 7:267–307. https://doi.org/10.3390/s7030267

    Article  CAS  Google Scholar 

  20. Chang A, Peng Y, Li Z, Yu X, Hong K, Zhou S, Vu W (2016) Assembly of polythiophenes on responsive polymer microgels for the highly selective detection of ammonia gas. Polym Chem 7:3179–3188. https://doi.org/10.1039/c5py02014j

    Article  CAS  Google Scholar 

  21. Liao F, Yin S, Toney MF, Subramanian V (2010) Physical discrimination of amine vapor mixtures using polythiophene gas sensor arrays. Sens Actuators B 150:254–263. https://doi.org/10.1016/j.snb.2010.07.006

    Article  CAS  Google Scholar 

  22. Al-Refai H, Ganash AA, Hussein A (2021) Polythiophene and its derivatives-based nanocomposites in electrochemical sensing: a mini review. Mater Today Communs 26:101935. https://doi.org/10.1016/j.mtcomm.2020.101935

    Article  CAS  Google Scholar 

  23. Faisal M, Harraz FA, Al-Salami AE, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2018) Polythiophene/ZnO nanocomposite-modified glassy carbon electrode as efficient electrochemical hydrazine sensor. Mater Chem Phys 214:126–134. https://doi.org/10.1016/j.matchemphys.2018.04.085

    Article  CAS  Google Scholar 

  24. Vijeth H, Ashokkumar SP, Yesappa L, Vandana M, Dvendrappa H (2019) Camphor sulfonic acid surfactant assited polythiophene nanocomposite for efficient electrochemical hydrazine sensor. Mater Res Express 6:125375. https://doi.org/10.1088/20531591/ab5ef5

    Article  CAS  Google Scholar 

  25. Shishkanova TV, Štěpánková N, Tlustý M, Tobrman T, Jurásek B, Kuchař M, Trchová M, Fitl P, Vrňata M (2021) Electrochemically oxidized 15-crown-5 substituted thiophene and host-guest interaction with new psychoactive substances. Electrochim Acta 373:137862. https://doi.org/10.1016/j.electacta.2021.137862

    Article  CAS  Google Scholar 

  26. Shi S, Meng G, Szostak M (2016) Synthesis of biaryls through nickel-catalyzed Suzuki-Miyaura coupling of amides by carbon–nitrogen bond cleavage. Angew Chem Int Ed 55:6959–6963. https://doi.org/10.1002/anie.201601914

    Article  CAS  Google Scholar 

  27. Budén ME, Guastavino JF, Rossi RA (2013) Room-temperature photoinduced direct C-H-Arylation via base-promoted homolytic aromatic substitution. Org Lett 15:1174–1177. https://doi.org/10.1021/ol3034687

    Article  CAS  Google Scholar 

  28. Volochanskyi O, Švecová M, Prokopec V (2019) Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 207:143–149. https://doi.org/10.1016/j.saa.2018.09.009

    Article  CAS  Google Scholar 

  29. Guerrero DJ, Ren X, Ferraris JP (1994) Preparation and characterization of poly(3-arylthiophene)s. Chem Mater 6:1437–1443.

    Article  CAS  Google Scholar 

  30. Dogbéavou R, El-Mehdi N, Naudin E, Breau L, Bélanger D (1997) Synthesis and electrochemical polymerization of poly [3-(1-naphthylthiophene)]. Synth Met 84:207–208. https://doi.org/10.1016/S0379-6779(97)80715-1

    Article  Google Scholar 

  31. Siddekha A, Nizam A, Pasha MA (2011) An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4′-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory. Spectrochim Acta A Mol Biomol Spectrosc 81(1):431–440. https://doi.org/10.1016/j.saa.2011.06.033

    Article  CAS  Google Scholar 

  32. Subbulakshmi RR, Palanichamy E, Arivazhagan M, Manivel S (2019) Theoretical studies on molecular structure and vibrational spectra of 2,4-difluoro-1-methoxy benzene and 1-chloro-3-methoxy benzene. Int J Sci Res Phys Appl Sci 7(3):34–48. https://doi.org/10.26438/ijsrpas/v7i3.3448

    Article  Google Scholar 

  33. Hangarter CM, Chartuprayoon N, Hernández SC, Choa Y, Myung NV (2013) Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8:39–55. https://doi.org/10.1016/j.nantod.2012.12.005

    Article  CAS  Google Scholar 

  34. Besar K, Yang S, Guo X, Huang W, Rule AM, Breysse PN, Kymissis IJ, Katz HE (2014) Printable ammonia sensor based on organic field effect transistor. Org Electron 15:3221–3230. https://doi.org/10.1016/j.orgel.2014.08.023

    Article  CAS  Google Scholar 

  35. Marr I, Moos R (2017) Resistive NOx dosimeter to detect very low NOx concentrations—proof-of-principle and comparison with classical sensing devices. Sens Actuators B Chem 248:848–855. https://doi.org/10.1016/j.snb.2016.12.112

    Article  CAS  Google Scholar 

  36. Smith MK, Jensen KE, Pivak PA, Mirica KA (2016) Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films. Chem Mater 28:5264–5268. https://doi.org/10.1021/acs.chemmater.6b02528

    Article  CAS  Google Scholar 

  37. Zhu R, Desroches M, Yoon B, Swager TM (2017) Wireless oxygen sensors enabled by Fe (II)-polymer wrapped carbon nanotubes. ACS Sensors 2:1044–1050. https://doi.org/10.1021/acssensors.7b00327

    Article  CAS  Google Scholar 

  38. Na W, Kim J, Kim YK, Kim SG, Jang J (2020) Fluorination of shape-controlled porous carbon nanoweb layers for ammonia gas sensor applications. Carbon 165:185–195. https://doi.org/10.1016/j.carbon.2020.04.085

    Article  CAS  Google Scholar 

  39. Makhloufi C, Roizard D, Favre E (2013) Reverse selective NH3/CO2 permeation in fluorinated polymers using membrane gas separation. J Membr Sci 441:63–72. https://doi.org/10.1016/j.memsci.2013.03.048

    Article  CAS  Google Scholar 

  40. Chabukswar VV, Pethkar S, Athawale AA (2001) Acrylic acid doped polyaniline as an ammonia sensor. Sens Actuators B Chem 77:657–663. https://doi.org/10.1016/S0925-4005(01)00780-8

    Article  CAS  Google Scholar 

  41. Virji S, Huang J, Kaner RB, Weiller BH (2004) Polyaniline nanofiber gas sensors: examination of response mechanisms. Nano Lett 4:491–496. https://doi.org/10.1021/nl035122e

    Article  CAS  Google Scholar 

  42. Hernandez SC, Chaudhuri D, Chen W, Myung NV, Mulchandani A (2007) Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 19:2125–2130. https://doi.org/10.1002/elan.200703933

    Article  CAS  Google Scholar 

  43. Patois T, Sanchez J-B, Berger F, Rauch J-Y, Fievet P, Lakard B (2012) Ammonia gas sensors based on polypyrrole films: influence of electrodeposition parameters. Sens Actuators B Chem 171–172:431–439. https://doi.org/10.1016/j.snb.2012.05.005

    Article  CAS  Google Scholar 

  44. Dunst KJ, Cysewska K, Kalinowski P, Jasiński P (2016) Polypyrrole based gas sensor for ammonia detection. IOP Conf Ser Mater Sci Eng 104:012028. https://doi.org/10.1088/1757-899X/104/1/012028

    Article  Google Scholar 

  45. Oudenhoven JFM, Knoben W, van Schaijk R (2015) Electrochemical detection of ammonia using a thin ionic liquid film as the electrolyte. Procedia Eng 120:983–986. https://doi.org/10.1016/j.proeng.2015.08.636

    Article  CAS  Google Scholar 

  46. Zhang L, Liu T, Ren R, Zhang J, He D, Zhao C, Suo H (2020) In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. J Hazard Mater 392:122342. https://doi.org/10.1016/j.jhazmat.2020.122342

    Article  CAS  Google Scholar 

  47. Zhang L, Wei L, Liu J, Gu J, Suo H, Zhao C (2022) One step and in situ synthesis of Ni foam-supported Pt-Ni(OH)2 nanosheets as electrochemical sensor for ammonia–nitrogen detection. Mater Lett 318:132197. https://doi.org/10.1016/j.matlet.2022.132197

    Article  CAS  Google Scholar 

  48. Prabhu CPK, Aralekallu S, Palanna M, Palanna M, Sajjan V, Renuka B, Sannegowda LK (2022) Novel polymeric zinc phthalocyanine for electro-oxidation and detection of ammonia. J Appl Electrochem 52:325–338. https://doi.org/10.1007/s10800-021-01640-3

    Article  CAS  Google Scholar 

  49. Tadi KK, Pal S, Narayanan TN (2016) Fluorographene based ultrasensitive ammonia sensor. Sci Rep 6:25221. https://doi.org/10.1038/srep25221

    Article  CAS  Google Scholar 

  50. Morakchi ZK, Zazoua A, Saad S, Kherrat R, Jaffrezic-Renault N (2008) Characterization of ammonium ion - sensitive membranes in solution with electrochemical impedance spectroscopy. Mater Sci Eng C 28:1020–1023. https://doi.org/10.1016/j.msec.2007.10.081

    Article  CAS  Google Scholar 

  51. Zhybak MT, Vagin MY, Beni V, Liu X, Dempsey E, Turner APF, Korpan YI (2016) Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode. Microchim Acta 183:1981–1987. https://doi.org/10.1007/s00604-016-1834-3

    Article  CAS  Google Scholar 

  52. Deng AP, Cheng JT, Huang HJ (2002) Application of a polyaniline based ammonium sensor for the amperometric immunoassay of a urease conjugated Tal 1 protein. Anal Chim Acta 461:49–55

    Article  CAS  Google Scholar 

  53. Saiapina OY, Kharchenko SG, Vishnevskii SG, Pyeshkova VM, Kalchenko VI, Dzyadevych SV (2016) Development of conductometric sensor based on 25, 27-di-(5-thio-octyloxy)calix [4] arene-crown-6 for determination of ammonium. Nanoscale Res Lett 11:105–115. https://doi.org/10.1186/s11671-016-1317-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to S. Effenberková for assistance in electrochemical measurements, M. Trchová for spectroscopic measurements, professor P. Matějka for discussion of spectroscopic results. This work was supported by a specific University research grant (Ministry of Education, Youth and Sports of the Czech Republic UCT Prague, CZ, 402850061). M. Vrňata, J. Otta and P. Fitl acknowledge the support from Czech Science Foundation (GAČR) project No. 22-14886S and Ministry of Education, Youth and Sports of the Czech Republic project No. 8F21008 and project No. JP22420 from the International Visegrad Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Shishkanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 303 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkanova, T.V., Tobrman, T., Otta, J. et al. Substituted polythiophene-based sensor for detection of ammonia in gaseous and aqueous environment. J Mater Sci 57, 17870–17882 (2022). https://doi.org/10.1007/s10853-022-07694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07694-8

Navigation