Skip to main content
Log in

Fabrication, negative thermal expansion and optical properties of scandium molybdate thin films

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Negative thermal expansion (NTE) Sc2(MoO4)3 thin films were fabricated on quartz substrates via facile sol–gel spin coating technique. Effects of process parameters on the phase composition, morphology, thermal expansion behavior and optical property of the Sc2(MoO4)3 thin films were investigated. XRD analysis reveals that as-deposited Sc2Mo3O12 thin films show amorphous phase. Orthorhombic Sc2(MoO4)3 thin films were prepared after annealing in 500–780 °C for 1 h, the crystalline quality of the post-annealed Sc2(MoO4)3 thin films gradually improved, and the grain size also increased as annealing temperature rises. Both as-deposited and post-annealed Sc2(MoO4)3 thin films show a smooth and compact surface. Low heating and cooling rates have contributed to the improvement of quality of the Sc2(MoO4)3 thin films. Orthorhombic Sc2(MoO4)3 thin films show anisotropic NTE. Its coefficient of thermal expansion is − 1.86 × 10−6  °C−1 in 25–700 °C. The transmittance of orthorhombic Sc2(MoO4)3 thin film post-annealed at 780 °C is measured as well and which is about 82% in the visible light range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Takenaka K, Ichigo M (2014) Thermal expansion adjustable polymer matrix composites with giant negative thermal expansion filler. Compos Sci Technol 104:47–51. https://doi.org/10.1016/j.compscitech.2014.08.029

    Article  CAS  Google Scholar 

  2. Chu XX, Wu ZX, Huang CJ, Huang RJ, Zhou Y, Li LF (2012) ZrW2O8-doped epoxy as low thermal expansion insulating materials for superconducting feeder system. Cryogenics 52:638–641. https://doi.org/10.1016/j.cryogenics.2012.04.016

    Article  CAS  Google Scholar 

  3. Yang J, Yang YS, Liu QQ, Xu GF, Cheng XN (2010) Preparation of negative thermal expansion ZrW2O8 powders and its application in polyimide/ZrW2O8 composites. J Mater Sci Technol 26:665–668. https://doi.org/10.1016/S1005-0302(10)60103-X

    Article  CAS  Google Scholar 

  4. Sutton MS, Talghader J (2015) Zirconium tungstate (ZrW2O8)-based micromachined negative thermal-expansion thin films. J Microelectromech Syst 13:688–695. https://doi.org/10.1109/JMEMS.2004.832191

    Article  CAS  Google Scholar 

  5. Evans J, Mary TA, Sleight AW (1998) Negative thermal expansion in Sc2(WO4)3. J Solid State Chem 137:148–160. https://doi.org/10.1006/jssc.1998.7744

    Article  CAS  Google Scholar 

  6. Zhang ZP, Yang L, Liu HF, Wang W, Zeng XH, Chen XB (2016) Preparation and negative thermal expansion properties of Y2W3O12 thin films grown by pulsed laser deposition. Ceram Int 42:18902–18906. https://doi.org/10.1016/j.ceramint.2016.09.039

    Article  CAS  Google Scholar 

  7. Maczka M, Hermanowicz K, Hanuza J (2005) Phase transition and vibrational properties of A2(BO4)3 compounds (A=Sc, In; B=Mo, W). J Mol Struct 744:283–288. https://doi.org/10.1016/j.molstruc.2004.10.049

    Article  CAS  Google Scholar 

  8. Mary TA, Sleight AW (1999) Bulk thermal expansion for tungstate and molybdates of the type A2M3O12. J Mater Res 14:912–915. https://doi.org/10.1557/JMR.1999.0122

    Article  CAS  Google Scholar 

  9. Evans J, Mary TA (2000) Structural phase transitions and negative thermal expansion in Sc2(MoO4)3. Int J Inorg Mater 2:143–151. https://doi.org/10.1016/S1466-6049(00)00012-X

    Article  CAS  Google Scholar 

  10. Imanaka N, Hiraiwa M, Adachi G, Dabkowska H, Dabkowski A (2000) Thermal contraction behavior in Al2(WO4)3 single crystal. J Cryst Growth 220:176–179. https://doi.org/10.1016/S0022-0248(00)00771-5

    Article  CAS  Google Scholar 

  11. Tyagi AK, Achary SN, Mathews MD (2002) Phase transition and negative thermal expansion in A2(MoO4)3 system (A= Fe3+, Cr3+ and Al3+). J Alloy Compd 339:207–210. https://doi.org/10.1002/chin.200312008

    Article  CAS  Google Scholar 

  12. Sivasubramanian V, Ravindran TR, Nithya R, Arora AK (2004) Structural phase transition in indium tungstate. J Appl Phys 96:387–392. https://doi.org/10.1063/1.1757659

    Article  CAS  Google Scholar 

  13. Ari M, Miller KJ, Marinkovic BA, Jardim PM, Avillez RD, Rizzo F, White MA (2011) Rapid synthesis of the low thermal expansion phase of Al2Mo3O12 via a sol–gel method using polyvinyl alcohol. J Sol-Gel Sci Technol 58:121–125. https://doi.org/10.1007/s10971-010-2364-9

    Article  CAS  Google Scholar 

  14. Marinkovic BA, Ari M, Jardim PM, Avillez RR, Rizzo F, Ferreira FF (2010) In2Mo3O12: a low negative thermal expansion compound. Thermochim Acta 499:48–53. https://doi.org/10.1016/j.tca.2009.10.021

    Article  CAS  Google Scholar 

  15. Prisco LP, Romao CP, Rizzo F, White MA, Marinkovic BA (2013) The effect of microstructure on thermal expansion coefficients in powder-processed Al2Mo3O12. J Mater Sci 48:2986–2996. https://doi.org/10.1007/s10853-012-7076-9

    Article  CAS  Google Scholar 

  16. Jardim PM, Garcia ES, Marinkovic BA (2016) Young’s modulus, hardness and thermal expansion of sintered Al2W3O12 with different porosity fractions. Ceram Int 42:5211–5217. https://doi.org/10.1016/j.ceramint.2015.12.045

    Article  CAS  Google Scholar 

  17. Liu HF, Yang L, Zhang ZP, Pan KM, Zhang F, Cheng HH, Zeng XH, Chen XB (2016) Preparation and optical, nanomechanical, negative thermal expansion properties of Sc2W3O12 thin film grown by pulsed laser deposition. Ceram Int 42:8809–8814. https://doi.org/10.1016/j.ceramint.2016.02.124

    Article  CAS  Google Scholar 

  18. Liu HF, Zhang ZP, Zhang W, Chen XB, Cheng XN (2011) Negative thermal expansion ZrW2O8 thin films prepared by pulsed laser deposition. Surf Coat Technol 205:5073–5076. https://doi.org/10.1016/j.surfcoat.2011.05.010

    Article  CAS  Google Scholar 

  19. Liu QQ, Cheng XN, Yang J, Sun XJ (2012) Fabrication of negative thermal expansion ZrMo2O8 film by sol–gel method. Mater Sci Eng B 177:263–268. https://doi.org/10.1016/j.mseb.2011.12.020

    Article  CAS  Google Scholar 

  20. Li J, Cheng XN, Zhu JJ (2013) Preparation of Sc2Mo3O12 and characterization of its negative thermal expansion property. Appl Mech Mater 320:181–184. https://doi.org/10.4028/www.scientific.net/AMM.320.181

    Article  CAS  Google Scholar 

  21. Sumithra S, Tyagi AK, Umarji AM (2005) Negative thermal expansion in Er2W3O12 and Yb2W3O12 by high temperature X-ray diffraction. Mater Sci Eng, B 116:14–18. https://doi.org/10.1016/j.mseb.2004.08.015

    Article  CAS  Google Scholar 

  22. Xiao XL, Cheng YZ, Peng J, Wu MM, Chen DF, Hu ZB, Jorgensen J (2008) Thermal expansion properties of A2(MO4)3 (A= Ho and Tm; M= W and Mo). Solid State Sci 10:321–325. https://doi.org/10.1016/j.solidstatesciences.2007.09.001

    Article  CAS  Google Scholar 

  23. Liu HF, Zhang W, Zhang ZP, Chen XB (2012) Synthesis and negative thermal expansion properties of solid solutions Yb2−xLaxW3O12 (0≤ x≤ 2). Ceram Int 38:2951–2956. https://doi.org/10.1016/j.ceramint.2011.11.072

    Article  CAS  Google Scholar 

  24. Cheng YZ, Xiao XL, Liu XF, Wu MM, Peng J, Hu ZB (2013) Study of the structures and thermal expansion properties of solid solutions Yb2−xDyxW3O12 (0≤ x≤ 1.5 and 1.8≤ x≤ 2.0). Physica B 411:173–177. https://doi.org/10.1016/j.physb.2012.12.006

    Article  CAS  Google Scholar 

  25. Cheng YZ, Wu MM, Peng J, Xiao XL, Li ZX, Hu ZB, Kiyanagi R, Fieramosca JS, Short S, Jorgensen J (2007) Structures, thermal expansion properties and phase transitions of ErxFe2−x(MoO4)3 (0.0≤ x≤ 2.0). Solid State Sci 9:693–698. https://doi.org/10.1002/chin.200747007

    Article  CAS  Google Scholar 

  26. Wu MM, Peng J, Cheng YZ, Xiao XL, Hao YM, Hu ZB (2007) Thermal expansion in solid solution Er2−xSmxW3O12. Mater Sci Eng, B 137:144–148. https://doi.org/10.1016/j.mseb.2006.11.004

    Article  CAS  Google Scholar 

  27. Wu MM, Peng J, Zu Y, Liu RD, Hu ZB, Liu YT, Chen DF (2012) Thermal expansion properties of Lu2−xFexMo3O12. Chin Phys B 21:116102. https://doi.org/10.1088/1674-1056/21/11/116102

    Article  CAS  Google Scholar 

  28. Varga T, Moats JL, Ushakov SV, Navrotsky A (2007) Thermochemistry of A2M3O12 negative thermal expansion materials. J Mater Res 22:2512–2521. https://doi.org/10.1557/jmr.2007.0311

    Article  CAS  Google Scholar 

  29. Liu HF, Zhang ZP, Ma J, Zhu J, Zeng XH (2015) Effect of isovalent substitution on phase transition and negative thermal expansion of In2−xScxW3O12 ceramics. Ceram Int 41:9873–9877. https://doi.org/10.1016/j.ceramint.2015.04.062

    Article  CAS  Google Scholar 

  30. Liu HF, Sun WK, Zhang ZP, Zhang XY, Zhou YX, Zhu J, Zeng XH (2019) Tailored phase transition temperature and negative thermal expansion of Sc-substituted Al2Mo3O12 synthesized by a co-precipitation method. Inorg Chem Front 6:1842–1850. https://doi.org/10.1039/C9QI00366E

    Article  CAS  Google Scholar 

  31. Zhou C, Zhang Q, Zhang MM, Wu GH (2017) in-situ Raman spectroscopy study of thermal mismatch stress and negative thermal expansion behaviors of ZrW2O8 in ZrW2O8/Al composite. J Alloy Compd 718:356–360. https://doi.org/10.1016/j.jallcom.2017.05.215

    Article  CAS  Google Scholar 

  32. Zhou C, Zhou YX, Zhang Q, Meng QY, Zhang LY, Kobayashi E, Wu GH (2021) Near-zero thermal expansion of ZrW2O8/Al-Si composites with three dimensional interpenetrating network structure. Compos Part B Eng 211:108678. https://doi.org/10.1016/j.compositesb.2021.108678

    Article  CAS  Google Scholar 

  33. Liu HF, Wang G, Zhang ZP, Pan K, Zeng X (2014) Synthesis of negative thermal expansion HfW2O8 thin film using pulsed laser deposition. Ceram Int 40(9):13855–13859. https://doi.org/10.1016/j.ceramint.2014.05.103

    Article  CAS  Google Scholar 

  34. Liu HF, Zhang ZP, Zhang W, Chen XB, Cheng XN (2011) Preparation and properties of ZrW2O8 thin films deposited by pulsed laser deposition. J Inorg Mater 26:540–544. https://doi.org/10.3724/sp.j.1077.2011.00540

    Article  CAS  Google Scholar 

  35. Liu HF, Zhang CJ, Zhang ZP, Meng XD, Zeng XH (2021) Synthesis and thermal expansion behaviors of spin-coated Sc2Mo3O12 thin films. Ceram Int 47:4769–4774. https://doi.org/10.1016/j.ceramint.2020.10.046

    Article  CAS  Google Scholar 

  36. Zhou F, Liang KM, Shao H (2005) Study on the cracking of SiO2-TiO2 films prepared by sol-gel method. Mater Sci Forum 475–479:1227–1230. https://doi.org/10.4028/www.scientific.net/MSF.475-479.1227

    Article  Google Scholar 

  37. Lu XM, Wang TL, Qi Y (2016) Crystalline characteristics and superconducting properties of Bi2212 thin films by Pechini sol-gel method: effect of heating rate on the film growth. J Sol-Gel Sci Technol 77(1):100–108. https://doi.org/10.1007/s10971-015-3834-x

    Article  CAS  Google Scholar 

  38. Liu HF, Zhang N, Zhang ZP (2022) Investigating negative thermal expansion property of decahedral Sc2Mo3O12 prepared via hydrothermal method. Solid State Sci 106961:1293–2558. https://doi.org/10.1016/j.solidstatesciences.2022.106961

    Article  CAS  Google Scholar 

  39. Chen J, Hu L, Deng JX, Xing XR (2015) Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem Soc Rev 44(11):3522–3567. https://doi.org/10.1039/C4CS00461B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of National Natural Science Foundation of China (No.51602280 and No.51102207), Qing Lan Project of Jiangsu Province, Yangzhou University Science and Technique Innovation Foundation (No.2019CXJ010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongfei Liu or Zhiping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Huang, F., Alzakree, A.R.H. et al. Fabrication, negative thermal expansion and optical properties of scandium molybdate thin films. J Mater Sci 57, 17162–17171 (2022). https://doi.org/10.1007/s10853-022-07665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07665-z

Navigation