Skip to main content
Log in

Thermodynamic and atomic mobility assessment of the Co–Fe–Mn system

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase equilibria and diffusivity of Co–Fe–Mn system were investigated using alloy equilibrium and the diffusion couple technique. Furthermore, thermodynamic properties and diffusion mobilities were assessed using the CALPHAD approach. Isothermal sections of the ternary phase diagrams of the Co–Fe–Mn alloy at 800, 900, and 1000 °C were obtained. The phase boundaries between face-centered cubic (fcc)/A13 were experimentally determined for the first time, whereas those between fcc/body-centered cubic were similar to those reported in previous studies. The thermodynamic parameters of the A13 phase were assessed based on these results. The phase diagrams obtained using the thermodynamic interaction parameters in this study are in accordance with the experimental results. The diffusion paths of the fcc Co–Fe–Mn ternary systems at 900, 1000, and 1100 °C were experimentally determined, and the interdiffusivities were evaluated from the composition-penetration profiles using the Whittle–Green method. The interdiffusion coefficients and penetration profiles were calculated using the assessed atomic mobility parameters. The calculated interdiffusion coefficients and penetration profiles agreed with the experimental ones, validating the values of the optimized atomic mobility parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Davis JR (Ed.) (1990) Metals Handbook. In: 10th ed., ASM International, Metals Park

  2. Yeh J-W (2006) Recent progress in high-entropy alloys. Ann Chim Sci Des Matériaux 31:633–648. https://doi.org/10.3166/acsm.31.633-648

    Article  CAS  Google Scholar 

  3. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  4. Murty SRBS, Yeh JW (2014) High-entropy alloys. Butterworth-Heinemann, Oxford. https://doi.org/10.1016/C2013-0-14235-3

    Book  Google Scholar 

  5. Li Z, Zhao S, Ritchie RO, Meyers MA (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003

    Article  CAS  Google Scholar 

  6. Li D, Li C, Feng T, Zhang Y, Sha G, Lewandowski JJ, Liaw PK, Zhang Y (2017) High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater 123:285–294. https://doi.org/10.1016/j.actamat.2016.10.038

    Article  CAS  Google Scholar 

  7. Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B, Liu Y, Chen MW, Liu CT (2016) Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater 116:332–342. https://doi.org/10.1016/j.actamat.2016.06.063

    Article  CAS  Google Scholar 

  8. Zhao YY, Chen HW, Lu ZP, Nieh TG (2018) Thermal stability and coarsening of coherent particles in a precipitation-hardened (NiCoFeCr)94Ti2Al4 high-entropy alloy. Acta Mater 147:184–194. https://doi.org/10.1016/j.actamat.2018.01.049

    Article  CAS  Google Scholar 

  9. Raza A, Abdulahad S, Kang B, Ryu HJ, Hong SH (2019) Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys. Appl Surf Sci 485:368–374. https://doi.org/10.1016/j.apsusc.2019.03.173

    Article  CAS  Google Scholar 

  10. Liu YY, Chen Z, Shi JC, Wang ZY, Zhang JY (2019) The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys. Vacuum 161:143–149. https://doi.org/10.1016/j.vacuum.2018.12.009

    Article  CAS  Google Scholar 

  11. Jablonski PD, Licavoli JJ, Gao MC, Hawk JA (2015) Manufacturing of high entropy alloys. Jom 67:2278–2287. https://doi.org/10.1007/s11837-015-1540-3

    Article  CAS  Google Scholar 

  12. Lu Y, Dong Y, Jiang H, Wang Z, Cao Z, Guo S, Wang T, Li T, Liaw PK (2020) Promising properties and future trend of eutectic high entropy alloys. Scr Mater 187:202–209. https://doi.org/10.1016/j.scriptamat.2020.06.022

    Article  CAS  Google Scholar 

  13. Mao H, Chen HL, Chen Q (2017) TCHEA1: a thermodynamic database not limited for “high entropy” alloys. J Phase Equilibria Diffus 38:353–368. https://doi.org/10.1007/s11669-017-0570-7

    Article  CAS  Google Scholar 

  14. Miracle DB (2017) High-entropy alloys: a current evaluation of founding ideas and core effects and exploring “nonlinear alloys.” Jom 69:2130–2136. https://doi.org/10.1007/s11837-017-2527-z

    Article  Google Scholar 

  15. Senkov ON, Miller JD, Miracle DB, Woodward C (2015) Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 6:1–10. https://doi.org/10.1038/ncomms7529

    Article  CAS  Google Scholar 

  16. Tong CJ, Chen MR, Chen SK, Yeh JW, Shun TT, Lin SJ, Chang SY (2005) Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A Phys Metall Mater Sci 36:1263–1271. https://doi.org/10.1007/s11661-005-0218-9

    Article  Google Scholar 

  17. Pickering EJ, Jones NG (2016) High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev 61:183–202. https://doi.org/10.1080/09506608.2016.1180020

    Article  CAS  Google Scholar 

  18. Abrahams K, Zomorodpoosh S, Khorasgani AR, Roslyakova I, Steinbach I, Kundin J (2021) Automated assessment of a kinetic database for fcc Co-Cr-Fe-Mn-Ni high entropy alloys. Model Simul Mater Sci Eng. https://doi.org/10.1088/1361-651X/abf62b

    Article  Google Scholar 

  19. Ishida K, Nishizawa T (1990) The Co-Mn (Cobalt-Manganese) system. Bull Alloy Phase Diagr 11:125–137. https://doi.org/10.1007/BF02841695

    Article  CAS  Google Scholar 

  20. Kaufman L (1979) Coupled phase diagrams and thermochemical data for transition metal binary systems-VI. Calphad 3:45–76. https://doi.org/10.1016/0364-5916(79)90020-8

    Article  Google Scholar 

  21. Hasebe M, Oikawa K, Nishizawa T (1982) Computer calculation of phase diagrams of Co-Cr and Co-Mn systems. J Jpn Inst Met 46:577–583. https://doi.org/10.2320/jinstmet1952.46.6_577

    Article  CAS  Google Scholar 

  22. Huang W (1989) An assessment of the Co-Mn system. Calphad 13:231–242. https://doi.org/10.1016/0364-5916(89)90003-5

    Article  CAS  Google Scholar 

  23. Hillert M, Jarl M (1978) A model for alloying in ferromagnetic metals. Calphad 2:227–238. https://doi.org/10.1016/0364-5916(78)90011-1

    Article  CAS  Google Scholar 

  24. Inden G (1976) Project meeting calphad V, Ch. 111. 4: 1–13

  25. Iijima H, Taguchi O, Hirano KI (1977) Interdiffusion in Co-Mn alloys. Metall Trans A 8:991–995. https://doi.org/10.1007/BF02661584

    Article  Google Scholar 

  26. Neumeier S, Rehman HU, Neuner J, Zenk CH, Michel S, Schuwalow S, Rogal J, Drautz R, Göken M (2016) Diffusion of solutes in FCC Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo. Acta Mater 106:304–312. https://doi.org/10.1016/j.actamat.2016.01.028

    Article  CAS  Google Scholar 

  27. Iijima Y, Hirano K-I, Taguchi O (1977) Diffusion of manganese in cobalt and cobalt-manganese alloys. Philos Mag 35:229–244. https://doi.org/10.1080/14786437708235985

    Article  CAS  Google Scholar 

  28. Liu H, Liu Y, Du Y, Min Q, Zhang J, Liu S (2019) Atomic mobilities and diffusivities in fcc Co–X (X = Mn, Pt and Re) alloys. Calphad Comput Coupling Phase Diagrams Thermochem 64:306–312. https://doi.org/10.1016/j.calphad.2019.01.003

    Article  CAS  Google Scholar 

  29. Huang W (1989) An assessment of the Fe-Mn system. Calphad 13:243–252. https://doi.org/10.1016/0364-5916(89)90003-5

    Article  CAS  Google Scholar 

  30. Witusiewicz VT, Sommer F, Mittemeijer EJ (2004) Reevaluation of the Fe-Mn phase diagram. J Phase Equilibria Diffus 25:346–354. https://doi.org/10.1361/15477030420115

    Article  CAS  Google Scholar 

  31. Li L, Hsu TY (1997) Gibbs free energy evaluation of the fcc(γ) and hcp(ε) phases in Fe-Mn-Si alloys. Calphad 21:443–448. https://doi.org/10.1016/S0364-5916(97)00044-8

    Article  CAS  Google Scholar 

  32. Liu Y, Zhang L, Du Y, Yu D, Liang D (2009) Atomic mobilities, uphill diffusion and proeutectic ferrite growth in Fe–Mn–C alloys. Calphad 33:614–623. https://doi.org/10.1016/j.calphad.2009.07.002

    Article  CAS  Google Scholar 

  33. Vignes A, Birchenall C (1968) Concentration dependence of the interdiffusion coefficient in binary metallic solid solution. Acta Metall 16:1117–1125. https://doi.org/10.1016/0001-6160(68)90047-3

    Article  CAS  Google Scholar 

  34. Million B, Rüzickova J, Kucera J (1993) Volume Self-diffusion of Fe 59 in Face-centered Cubic Fe–Mn Alloys/Volumenselbstdiffusion von Fe 59 in kubisch flächenzentrierten Fe–Mn-Legierungen. Int J Mater Res 84:687–689. https://doi.org/10.1515/ijmr-1993-841006

    Article  CAS  Google Scholar 

  35. Nohara K, Hirano K (1973) Self-diffusion and interdiffusion in γ solid solutions of the iron-manganese system. J Japan Inst Met 37:51–61. https://doi.org/10.2320/jinstmet1952.37.1_51

    Article  CAS  Google Scholar 

  36. Guillermet AF (1987) Critical evaluation of the thermodynamic properties of the iron-cobalt system. High Temp Press 19:477–499

    Google Scholar 

  37. Ohnuma I, Enoki H, Ikeda O, Kainuma R, Ohtani H, Sundman B, Ishida K (2002) Phase equilibria in the Fe-Co binary system. Acta Mater 50:379–393. https://doi.org/10.1016/S1359-6454(01)00337-8

    Article  CAS  Google Scholar 

  38. Turchanin MA, Dreval LA, Abdulov AR, Agraval PG (2011) Mixing enthalpies of liquid alloys and thermodynamic assessment of the Cu-Fe-Co system. Powder Metall Met Ceram 50:98–116. https://doi.org/10.1007/s11106-011-9307-z

    Article  CAS  Google Scholar 

  39. Wang J, Lu XG, Zhu N, Zheng W (2017) Thermodynamic and diffusion kinetic studies of the Fe-Co system. Calphad Comput Coupling Phase Diagrams Thermochem 58:82–100. https://doi.org/10.1016/j.calphad.2017.06.001

    Article  CAS  Google Scholar 

  40. Gong XM, Lu XG, He YL (2014) Study on atomic mobility and molar volume for FCC Fe-Co phase. Adv Mater Res 936:1201–1208. https://doi.org/10.4028/www.scientific.net/AMR.936.1201

    Article  CAS  Google Scholar 

  41. Badia M, Vignes A (1969) Interdiffusion and the Kirkendall effect in binary alloys. Mem Sci Rev Met 66:915–927

    CAS  Google Scholar 

  42. Hirano K, Iijima Y, Araki K, Homma H (1977) Interdiffusion in iron-cobalt alloys. Trans Iron Steel Inst Japan 17:194–203. https://doi.org/10.2355/isijinternational1966.17.194

    Article  CAS  Google Scholar 

  43. Köster W, Speidel M (1962) Über die Gleichgewichtseinstellung im Dreistoffsystem Eisen-Kobalt-Mangan. Arch Für Das Eisenhüttenwes 33:873–876. https://doi.org/10.1002/srin.196203407

    Article  Google Scholar 

  44. Huang W (1990) Thermodynamics of the Co-Fe-Mn system. Calphad 14:11–22. https://doi.org/10.1016/0364-5916(90)90035-X

    Article  CAS  Google Scholar 

  45. Andersson J-O, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26:273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  46. Dinsdale AT (1991) SGTE data for pure elements. Calphad 15:317–425. https://doi.org/10.1016/0364-5916(91)90030-N

    Article  CAS  Google Scholar 

  47. Onsager L (1931) Reciprocal relations in irreversible processes: I. Phys Rev 37:405–426. https://doi.org/10.1103/PhysRev.37.405

    Article  CAS  Google Scholar 

  48. Dayananda MA (1990) 6.2 Solutions of diffusion equations for constant ternary interdiffusion coefficients. In: Mehrer H (ed) Diffusion in solid metals and alloys. Springer, Berlin, pp 372–375. https://doi.org/10.1007/10390457_64

    Chapter  Google Scholar 

  49. Kattner UR, Campbell CE (2009) Invited review: Modelling of thermodynamics and diffusion in multicomponent systems. Mater Sci Technol 25:443–459. https://doi.org/10.1179/174328408X372001

    Article  CAS  Google Scholar 

  50. Andersson J, Ågren J (1992) Models for numerical treatment of multicomponent diffusion in simple phases. J Appl Phys 72:1350–1355. https://doi.org/10.1063/1.351745

    Article  CAS  Google Scholar 

  51. Zhong J, Chen W, Zhang L (2018) HitDIC: a free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase. Calphad Comput Coupling Phase Diagrams Thermochem 60:177–190. https://doi.org/10.1016/j.calphad.2017.12.004

    Article  CAS  Google Scholar 

  52. Chen W, Zhang L, Du Y, Tang C, Huang B (2014) A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple. Scr Mater 90–91:53–56. https://doi.org/10.1016/j.scriptamat.2014.07.016

    Article  CAS  Google Scholar 

  53. Manning JR (1967) Diffusion and the Kirkendall shift in binary alloys. Acta Metall 15:817–826. https://doi.org/10.1016/0001-6160(67)90363-X

    Article  CAS  Google Scholar 

  54. Ågren J (1982) Numerical treatment of diffusional reactions in multicomponent alloys. J Phys Chem Solids 43:385–391. https://doi.org/10.1016/0022-3697(82)90209-8

    Article  Google Scholar 

  55. Ågren J (1982) Computer simulations of the austenite/ferrite diffusional transformations in low alloyed steels. Acta Metall 30:841–851. https://doi.org/10.1016/0001-6160(82)90082-7

    Article  Google Scholar 

  56. Ågren J (1992) Computer simulations of diffusional reactions in complex steels. ISIJ Int 32:291–296. https://doi.org/10.2355/isijinternational.32.291

    Article  Google Scholar 

  57. Redlich O, Kister AT (1948) Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem 40:345–348. https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  58. Whittle DP, Green A (1974) The measurement of diffusion coefficients in ternary systems. Scr Metall 8:883–884. https://doi.org/10.1016/0036-9748(74)90311-1

    Article  CAS  Google Scholar 

  59. Wang M, Sundman B (1992) Thermodynamic assessment of the Mn-O system. Metall Trans B 23:821–831. https://doi.org/10.1007/BF02656461

    Article  Google Scholar 

  60. Wei M, Zhang L (2018) Application of distribution functions in accurate determination of interdiffusion coefficients. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22992-5

    Article  CAS  Google Scholar 

  61. Dierckx P (1975) An algorithm for smoothing, differentiation and integration of experimental data using spline functions. J Comput Appl Math 1:165–184. https://doi.org/10.1016/0771-050X(75)90034-0

    Article  Google Scholar 

  62. Dierckx P (1981) An improved algorithm for curve fitting with spline functions. TW Reports

  63. Dierckx P (1982) A fast algorithm for smoothing data on a rectangular grid while using spline functions. SIAM J Numer Anal 19:1286–1304. https://doi.org/10.1137/0719093

    Article  Google Scholar 

  64. Dierckx P (1995) Curve and surface fitting with splines. Oxford University Press, Oxford

    Google Scholar 

  65. Kirkaldy JS, Weichert D, Haq Z-U-H (1963) Diffusion in multicomponent metallic systems: Vi. Some thermodynamic properties of the d matrix and the corresponding solutions of the diffusion equations. Can J Phys 41:2166–2173. https://doi.org/10.1139/p63-211

    Article  CAS  Google Scholar 

  66. Zhang L, Du Y, Ouyang Y, Xu H, Lu XG, Liu Y, Kong Y, Wang J (2008) Atomic mobilities, diffusivities and simulation of diffusion growth in the Co-Si system. Acta Mater 56:3940–3950. https://doi.org/10.1016/j.actamat.2008.04.017

    Article  CAS  Google Scholar 

  67. Jönsson B (1994) Mobilities in Fe-Ni alloys: assessment of the mobilities of Fe and Ni in fcc Fe-Ni alloys. Scand J Metall 23:201–208

    Google Scholar 

  68. Badia M, Vignes A (1969) Iron, nickel and cobalt diffusion in transition metals of iron group. Acta Metall 17:177–187. https://doi.org/10.1016/0001-6160(69)90138-2

    Article  CAS  Google Scholar 

  69. Cui YW, Jiang M, Ohnuma I, Oikawa K, Kainuma R, Ishida K (2008) Computational study of atomic mobility for fcc phase of Co-Fe and Co-Ni binaries. J Phase Equilibria Diffus 29:2–10. https://doi.org/10.1007/s11669-007-9238-z

    Article  CAS  Google Scholar 

  70. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313. https://doi.org/10.1093/comjnl/7.4.308

    Article  Google Scholar 

  71. Gao F, Han L (2012) Implementing the Nelder-Mead simplex algorithm with adaptive parameters. Comput Optim Appl 51:259–277. https://doi.org/10.1007/s10589-010-9329-3

    Article  Google Scholar 

  72. Darken LS (1948) Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans Aime 175:184–201

    Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “High Entropy Alloys—Science of New Class of Materials Based on Elemental Multiplicity and Heterogeneity” (JSPS KAKENHI Grant Number 18H05454) and a Grant-in-Aid for Scientific Research (B) “Interfacial control of Co-based superalloy for new forging process” (JSPS KAKENHI Grant Number 18H01742). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

SPP contributed to methodology, investigation, software, validation, visualization, formal analysis, and writing—original draft. NU contributed to formal analysis, resources, and writing—review and editing. KO contributed to conceptualization, funding acquisition, methodology, resources, writing—review and editing, and supervision. YT contributed to formal analysis and writing—review and editing. TK contributed to formal analysis, funding acquisition, resources, and writing—review and editing.

Corresponding author

Correspondence to Sri Pragna Pendem.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendem, S.P., Ueshima, N., Oikawa, K. et al. Thermodynamic and atomic mobility assessment of the Co–Fe–Mn system. J Mater Sci 57, 15999–16015 (2022). https://doi.org/10.1007/s10853-022-07612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07612-y

Navigation