Skip to main content
Log in

Effect of chromium content on precipitation in Cu–Cr–Zr alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase content and the strengthening of two copper alloys, 0.1Cr–0.1Zr and 0.9Cr–0.1Zr, subjected to aging treatments were studied. The size of second phase particles and the strengthening mechanism depended remarkably on the chromium content. The strengthening of the 0.9Cr–0.1Zr alloy in the peak aged conditions was mainly attributed to the uniform dispersion of tiny shearable Cr-rich particles with a size of about 3–4.5 nm and the Nishiyama–Wassermann orientation relationship. In contrast, the microstructure of the peak aged conditions of the 0.1Cr–0.1Zr alloy was characterized by the dispersion of relatively large Cr particles with a size of about 8–10 nm, which resulted in the strengthening accordingly Orowan mechanism. The reasons for the difference in the decomposition of the supersaturated solid solution and the morphology of particles are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tang NY, Taplin DMR, Dunlop GL (1985) Precipitation and aging in high-conductivity Cu–Cr alloys with additions of zirconium and magnesium. Mater Sci Technol 1:270–275. https://doi.org/10.1179/mst.1985.1.4.270

    Article  CAS  Google Scholar 

  2. Batra IS, Dey GK, Kulkarni UD, Banerjee S (2001) Microstructure and properties of a Cu–Cr–Zr alloy. J Nucl Mater 299:91–100. https://doi.org/10.1016/S0022-3115(01)00691-2

    Article  CAS  Google Scholar 

  3. Fuxiang H, Jusheng M, Honglong N, Zhiting G, Chao L, Shumei G, Xuetao Y, Tao W, Hong L, Huafen L (2003) Analyses of phases in a Cu–Cr–Zr alloy. Scr Mater 48:97–102. https://doi.org/10.1016/S1359-6462(02)00353-6

    Article  Google Scholar 

  4. Bodyakova A, Pilipenko A, Lugovskaya A, Belyakov A, Kaibyshev R (2021) Thermal stability of gradient microstructure in a low-alloyed Cu-Cr-Zr alloy. Mater Lett 304:130531. https://doi.org/10.1016/j.matlet.2021.130531

    Article  CAS  Google Scholar 

  5. Purcek G, Yanar H, Demirtas M, Shangina DV, Bochvar NR, Dobatkin SV (2020) Microstructural, mechanical and tribological properties of ultrafine-grained Cu–Cr–Zr alloy processed by high pressure torsion. J All Comp 816:152675. https://doi.org/10.1016/j.jallcom.2019.152675

    Article  CAS  Google Scholar 

  6. Aksenov DA, Raab GI, Asfandiyarov RN, Semenov VI, Shuster LS (2020) Effect of Cd and SPD on structure, physical, mechanical, and operational properties of alloy of Cu-Cr-Zr. Rev Adv Mater Sci 59(1):506–513. https://doi.org/10.1515/rams-2020-0045

    Article  CAS  Google Scholar 

  7. Morozova AI, Belyakov AN, Kaibyshev RO (2021) Effect of deformation temperature on formation of ultrafine-grained structure in the age-hardenable Cu–Cr–Zr alloy. Phys Metals Metallog 122(1):60–66. https://doi.org/10.1134/S0031918X21010087

    Article  CAS  Google Scholar 

  8. Chibihi A, Sauvage X, Blavette D (2012) Atomic scale investigation of Cr precipitation in copper. Acta Mater 60:4575–4585. https://doi.org/10.1016/j.actamat.2012.01.038

    Article  Google Scholar 

  9. Lin GB, Wang ZD, Zhang MK, Zhang H, Zhao M (2011) Heat treatment method for making highstrength and conductivity Cu–Cr–Zr alloy. Mater Sci Technol 27:966–969. https://doi.org/10.1179/026708310X12815992418210

    Article  CAS  Google Scholar 

  10. Zhilyaev AP, Morozova A, Cabrera JM, Kaibyshev R, Langdon TG (2017) Wear resistance and electroconductivity in a Cu–0.3 Cr–0.5 Zr alloy processed by ECAP. J Mater Sci 52(1):305–313. https://doi.org/10.1007/s10853-016-0331-8.

  11. Peng H, Xie W, Chen H, Wang H, Yang B (2021) Effect of micro-alloying element Ti on mechanical properties of Cu–Cr alloy. J All Comp 852:157004. https://doi.org/10.1016/j.jallcom.2020.157004

    Article  CAS  Google Scholar 

  12. Huang Z, Shi R, Xiao X, Fu H, Chen Q, Xie J (2021) Mechanism investigation on high-performance Cu-Cr-Ti alloy via integrated computational materials engineering. Mater Today Com 27:102378. https://doi.org/10.1016/j.mtcomm.2021.102378

    Article  CAS  Google Scholar 

  13. Sun Y, Peng L, Huang G, Xie H, Mi X, Liu X (2020) Effects of Mg addition on the microstructure and softening resistance of Cu–Cr alloys. Mater Sci Eng A 776: 139009. https://doi.org/10.1016/j.msea.2020.139009.

  14. Zeng H, Sui H, Wu S, Liu J, Wang H, Zhang J, Yang B (2021) Evolution of the microstructure and properties of a Cu–Cr-(Mg) Alloy upon thermomechanical treatment. J All Comp 857:157582. https://doi.org/10.1016/j.jallcom.2020.157582

    Article  CAS  Google Scholar 

  15. Fujii T, Nakazawa H, Kato M, Dahnem U (2000) Crystallography and morfology of nanosized Cr particles in a Cu–0.2%Cr alloy. Acta Mater 48:1033–1045. https://doi.org/10.1016/S1359-6454(99)00411-5

    Article  CAS  Google Scholar 

  16. Correia JB, Davies HA, Sellars CM (1997) Strengthening in rapidly solidified and hardened Cu–Cr and Cu–Cr–Zr alloys. Acta Mater 45:177–190. https://doi.org/10.1016/S1359-6454(96)00142-5

    Article  CAS  Google Scholar 

  17. Singh RP, Lawley A, Friedman S, Murty YV (1991) Microstructure and properties of spray cast Cu-Zr alloys. Mater Sci Eng A 145:243–255. https://doi.org/10.1016/0921-5093(91)90254-K

    Article  Google Scholar 

  18. Peng L, Xie H, Huang G, Li Y, Yin X, Feng X (2015) The phase transformation and its effects on properties of a Cu− 0.12 wt% Zr alloy. Mater Sci Eng A 145:28–34. https://doi.org/10.1016/j.msea.2015.02.077

    Article  CAS  Google Scholar 

  19. Zel’dovich VI, Dobatkin SV, Frolova NY, Khomskaya IV, Kheifets AE, Shorokhov EV, Nasonov PA (2016) Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging. Phys Metals Metallog 117(1):74–82. https://doi.org/10.1134/S0031918X16010129

    Article  CAS  Google Scholar 

  20. Wang K, Liu K-F, Zhang J-B (2014) Microstructure and properties of aging Cu–Cr–Zr alloy. Rare Met 33:134–138. https://doi.org/10.1007/s12598-014-0244-0

    Article  CAS  Google Scholar 

  21. Cheng JY, Shen B, Yu FX (2013) Precipitation in a CuCrZrMg alloy during aging. Mater Character 81:68–75. https://doi.org/10.1016/j.matchar.2013.04.008

    Article  CAS  Google Scholar 

  22. Williams RO (1960) Precipitation process in Cu-Cr alloys. Trans ASM 52:530–538

    CAS  Google Scholar 

  23. Knights RW, Wilkes P (1973) Precipitation of chromium in copper and copper-nickel base alloys. Metall Trans 4:2389–2393. https://doi.org/10.1007/BF02669380

    Article  CAS  Google Scholar 

  24. Weatherly GC, Humble P, Borland D (1979) Precipitation in a Cu–0.55wt%Cr alloy. Acta Mater 27:1815–1828. https://doi.org/10.1016/0001-6160(79)90072-5

    Article  CAS  Google Scholar 

  25. Zhou HT, Zhong JW, Zhou X, Zhao ZK, Li QB (2008) Microstructure and properties of Cu–1.0Cr–0.2Zr–0.03Fe alloy. Mater Sci Eng A 498:225–230. https://doi.org/10.1016/j.msea.2008.07.061

    Article  CAS  Google Scholar 

  26. Kawakatsu I, Suzuki H, Kitano H (1967) Properties of high zirconium copper-zirconium-chromium alloys and isothermal diagram at the copper-rich corner. J Jpn Inst Met 31:1253–1257

    Article  CAS  Google Scholar 

  27. Holzwarth U, Stamm H (2000) The precipitation behaviour of ITER-grade Cu-Cr-Zr alloyafter simulating the thermal cycle of hot isostatic pressing. J Nucl Mater 279:31–45. https://doi.org/10.1016/S0022-3115(99)00285-8

    Article  CAS  Google Scholar 

  28. Lou MYW, Grant NJ (1984) Identification of Cu5Zr phase in Cu-Zralloys. Metall Trans A 15:1491–1493

    Article  Google Scholar 

  29. Watanabe C, Monzen R, Tazaki K (2008) Mechanical properties of Cu–Cr system alloys with and without Zr and Ag. J Mater Sci 43:813–819. https://doi.org/10.1007/s10853-007-2159-8

    Article  CAS  Google Scholar 

  30. Vitek JM (1976) Ellectron microprobe investigation of the intermediate phases in the Cu-Zr system. Z Metallkd 67:559–563. https://doi.org/10.1515/ijmr-1976-670810

    Article  CAS  Google Scholar 

  31. Chembarisova RG, Galaktionova AV, Yamileva AM (2021) Evolution of Secondary Phase Particles in Cu–Cr–Zr Alloys with an extremely low concentration of solid solution during thermomechanical treatment. Phys Metals Metallog 122(1):40–46. https://doi.org/10.1134/S0031918X21010026

    Article  CAS  Google Scholar 

  32. Donachje MJ (1963) Investigation of copper-rich portion of copper-zirconium phase diagram by electron-probe microanalysis. J Inst Met 92:180–185

    Google Scholar 

  33. Su JH, Liu P, Li HJ, Ren FZ, Dong QM (2007) Phase transformation in Cu–Cr–Zr–Mg alloy. Mater Lett 61:4963–4966. https://doi.org/10.1016/j.matlet.2007.03.085

    Article  CAS  Google Scholar 

  34. Su JH, Dong QM, Liu P, Li HJ, Kang BX (2005) Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater Sci Eng A 392:422–426. https://doi.org/10.1016/j.msea.2004.09.041

    Article  CAS  Google Scholar 

  35. Mu SG, Guo FA, Tang YQ, Cao XM, Tang MT (2008) Study on microstructure and properties of agedCu–Cr–Zr–Mg–RE alloy. Mater Sci Eng A 475:235–240. https://doi.org/10.1016/j.msea.2007.04.056

    Article  CAS  Google Scholar 

  36. Wang J, Zhang HT, Fu HD, Xie JX (2021) Effect of Cr content on microstructure and properties of aged Cu–Cr–P alloys. Trans Nonfer Met Soc China 31(1):232–242. https://doi.org/10.1016/S1003-6326(20)65490-5

    Article  CAS  Google Scholar 

  37. Zel’dovich VI, Dobatkin SV, Frolova NY, Khomskaya IV, Kheifets AE, Shorokhov EV, Nasonov PA (2016) Mechanical properties and the structure of chromium–zirconium bronze after dynamic channel-angular pressing and subsequent aging. Phys Metal Metallog 117(1):74–82. https://doi.org/10.1134/S0031918X16010129

    Article  CAS  Google Scholar 

  38. Khomskaya IV, Zel’Dovich VI, Shorokhov EV, Frolova NY, Kheifets AE, Dyakina VP (2017) Effect of high-rate deformation on the structure, the properties, and the thermal stability of copper alloyed with chromium and zirconium. Rus Metallurg (Metally) 10:851–857. https://doi.org/10.1134/S003602951710010X

    Article  Google Scholar 

  39. Morozova A, Mishnev R, Belyakov A, Kaibyshev R (2018) Microstructure and properties of fine grained Cu-Cr-Zr alloys after termo-mechanical treatments. Rev Adv Mater Sci 54(1):56–92. https://doi.org/10.1515/rams-2018-0020

    Article  CAS  Google Scholar 

  40. Ahmadi MR, Sonderegger B, Povoden-Karadeniz E, Falahati A, Kozeschnik E (2014) Precipitate strengthening of non-spherical precipitates extended in <100> or 100 direction in fcc crystals. Mater Sci Eng A 590:262–266. https://doi.org/10.1016/j.msea.2013.10.043

    Article  CAS  Google Scholar 

  41. Sonderegger B, Kozeschnik E (2012) Particle strengthening in fcc crystals with prolate and oblate precipitates. Scr Mater 66:52–55. https://doi.org/10.1016/j.scriptamat.2011.10.003

    Article  CAS  Google Scholar 

  42. Kendig KL, Miracle DB (2002) Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater 50:4165–4175. https://doi.org/10.1016/S1359-6454(02)00258-6

    Article  CAS  Google Scholar 

  43. Hull D, Bacon DJ (1984) Introduction to dislocations, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  44. Ahmadi MR, Povoden-Karadeniz E, Whitmore L, Stockinger M, Falahati A, Kozeschnik E (2014) Yield strength prediction in Ni­base alloy 718Plus based on thermo­kinetic precipitation simulation. Mater Sci Eng A 608:114–122. https://doi.org/10.1016/j.msea.2014.04.054

    Article  CAS  Google Scholar 

  45. Nembach F (1983) Precipitation hardening caused by a difference in shear modulus between particle and matrix. Phys Stat Solid A 78:571–581. https://doi.org/10.1002/pssa.2210780223

    Article  Google Scholar 

  46. Kocks UF, Mecking H (2003) Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci 48:171–273. https://doi.org/10.1016/S0079-6425(02)00003-8

    Article  CAS  Google Scholar 

  47. Holzner I, Kozeschnik E (2010) Computer simulation of the yield strength evolution in Cu-precipitation strengthened ferritic steel. Mater Sci Eng A 527:3546–3551. https://doi.org/10.1016/j.msea.2010.02.032

    Article  CAS  Google Scholar 

  48. Ahmadi MR, Povoden-Karadeniz E, Oksuz KI, Falahati A, Kozeschnik E (2014) A model for precipitation strengthening in multi-particle systems. Comp Mater Sci 91:173–186. https://doi.org/10.1016/j.commatsci.2014.04.025

    Article  Google Scholar 

  49. Buschow KV, Van Engen PG, Jongebreur R (1983) Magneto-optical properties of metallic ferromagnetic materials. J Magn Magn Mater 38(1):1–22. https://doi.org/10.1016/0304-8853(83)90097-5

    Article  CAS  Google Scholar 

  50. Matthiessen A, Vogt C (1864) IV. On the influence of temperature on the electric conducting-power of alloys. Philos Trans R Soc 154 (1864):167–200. https://doi.org/10.1098/rstl.1864.0004.

  51. Su J, Liu P, Li H, Ren F, Dong Q (2007) Phase transformation in Cu–Cr–Zr–Mg alloy. Mater Let 61(27):4963–4966. https://doi.org/10.1016/j.matlet.2007.03.085

    Article  CAS  Google Scholar 

  52. Wang J, Kou HC, Gu XF, Li J S, Xing L Q, Hu R, Zhou L (2009) On discussion of the applicability of local Avrami exponent: errors and solutions. Mater Let 63(13–14):1153–1155. https://doi.org/10.1016/j.matlet.2009.01.027

    Article  CAS  Google Scholar 

  53. Li Y, Yang B, Zhang P, Ni Y, Yuan X, Le Q, Li Y (2021) Cu-Cr-Mg alloy with both high strength and high electrical conductivity manufactured by powder metallurgy process. Mater Today Com 27:102266. https://doi.org/10.1016/j.mtcomm.2021.102266

    Article  CAS  Google Scholar 

  54. Butrymowicz DB, Manning JR, Read ME (1975) Diffusion in copper and copper alloys. Part III. Diffusion in systems involving elements of the groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB. J Phys Chem Ref Data 4(1):177–250. https://doi.org/10.1063/1.555516.

  55. Gottstein G (2004) Physical foundations of materials science, 1st edn. Springer-Verlag, Berlin

    Book  Google Scholar 

  56. Deschamps A, Brechet Y (1998) Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater 47(1):293–305. https://doi.org/10.1016/S1359-6454(98)00296-1.

  57. Lyakishev NP, Bannykh OA (1996) Phase diagrams of binary metallic systems: a handbook, 1st edn. Mechanical Engineering, Moscow

    Google Scholar 

  58. Wu S, Wang J, Zhong S, Zhang J, Wang H, Yang B (2019) Effect of trace Mg addition on precipitation behavior and properties of Cu-Cr alloy. Chin J Mater Res 33(7):552–560. https://doi.org/10.11901/1005.3093.2018.596.

  59. Sheibani S, Heshmati-Manesh S, Ataie A, Caballero A, Criado JM (2014) Spinodal decomposition and precipitation in Cu–Cr nanocomposite. J All Comp 587:670–676. https://doi.org/10.1016/j.jallcom.2013.11.019

    Article  CAS  Google Scholar 

  60. Smith WF, Hashemi J (2003) Foundations of materials science and engineering. McGraw-Hill, New York (USA)

    Google Scholar 

  61. Harrell TJ, Topping TD, Wen H, Hu T, Schoenung JM, Lavernia EJ (2014) Microstructure and strengthening mechanisms in an ultrafine grained Al-Mg-Sc alloy produced by powder metallurgy. Metal Mater Trans A 45(13):6329–6343. https://doi.org/10.1007/s11661-014-2569-6

    Article  CAS  Google Scholar 

  62. Schneibel JH, Heilmaier M (2014) Hall-Petch breakdown at elevated temperatures. Mater Trans 55(1):44–51. https://doi.org/10.2320/matertrans.MA201309

    Article  CAS  Google Scholar 

  63. Russell KC, Brown LM (1972) A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system. Acta Metall 20(7):969–974. https://doi.org/10.1016/0001-6160(72)90091-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support received from Russian Science Foundation under Grant No. 21-79-00062 (https://rscf.ru/en/project/21-79-00062/) for financial support is gratefully acknowledged. The work was carried out using the equipment of the Joint Research Center of Belgorod National Research University «Technology and Materials».

Author information

Authors and Affiliations

Authors

Contributions

AB and RM were involved in investigation. AB and AB were involved in data curation and writing—original draft. RM was involved in formal analysis and methodology. RK collected resources and performed supervision and project administration.

Corresponding author

Correspondence to Anna Bodyakova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Sophie Primig.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyakova, A., Mishnev, R., Belyakov, A. et al. Effect of chromium content on precipitation in Cu–Cr–Zr alloys. J Mater Sci 57, 13043–13059 (2022). https://doi.org/10.1007/s10853-022-07454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07454-8

Navigation