Skip to main content

Advertisement

Log in

An electrically conductive polyvinyl alcohol/poly (acrylic acid-co-acrylamide)/polydopamine-decorated carbon nanotubes composite hydrogel with appropriate mechanical properties for human movement monitoring

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, flexible wearable electronic devices have received extensive attention in the fields of human health monitoring, bioelectronic interfaces, and human–computer interaction. Conductive hydrogels have gradually become the best candidate materials for flexible wearable electronic devices, due to their good conductive properties, elastic modulus similar to natural skin tissue, and adjustable mechanical properties. In this study, polyvinyl alcohol/poly (acrylic acid-co-acrylamide)/polydopamine-decorated carbon nanotubes (PVA/P(AA-co-AM)/PDA@CNTs) composite hydrogel was prepared by free radical copolymerization and in situ composite methods. The double-physical cross-linked network composed of PVA and P(AA-co-AM) formed an efficient energy dissipation system. The composite hydrogel exhibits appropriate mechanical properties (tensile strength of 1.21 ± 0.04 MPa, elongation at break of 221.28 ± 2.04%, toughness of 1.22 ± 0.36 MJ m−3). PDA@CNTs formed conductive pathways in the composite hydrogel, which endowed hydrogel with electrical conductivity (3.84 S/m) and high sensitivity (gauge factor of 1.6). The wearable sensor based on composite hydrogel can monitor the joint movement and muscle movement of the human body. PVA/P(AA-co-AM)/PDA@CNTs composite hydrogel has great application prospects in the field of flexible wearable electronic devices for human movement monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Fu F, Wang J, Zeng H, Yu J (2020) Functional conductive hydrogels for bioelectronics. ACS Mater Lett 2(10):1287–1301. https://doi.org/10.1021/acsmaterialslett.0c00309

    Article  CAS  Google Scholar 

  2. Lee T, Lee W, Kim S-W, Kim JJ, Kim B-S (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO Nanowires with controlled aspect ratio. Adv Funct Mater 26(34):6206–6214. https://doi.org/10.1002/adfm.201601237

    Article  CAS  Google Scholar 

  3. Zhao S, Li J, Cao D et al (2017) Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl Mater Interfaces 9(14):12147–12164. https://doi.org/10.1021/acsami.6b13800

    Article  CAS  Google Scholar 

  4. Wan P, Wen X, Sun C et al (2015) Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11(40):5409–5415. https://doi.org/10.1002/smll.201501772

    Article  CAS  Google Scholar 

  5. Amjadi M, Kyung K-U, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26(11):1678–1698. https://doi.org/10.1002/adfm.201504755

    Article  CAS  Google Scholar 

  6. Wang Z, Cong Y, Fu J (2020) Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 8(16):3437–3459. https://doi.org/10.1039/C9TB02570G

    Article  CAS  Google Scholar 

  7. Rong Q, Lei W, Liu M (2018) Frontispiece: conductive hydrogels as smart materials for flexible electronic devices. Chem A Eur J 24(64):16930–16943. https://doi.org/10.1002/chem.201886461

    Article  CAS  Google Scholar 

  8. Pyarasani RD, Jayaramudu T, John A (2018) Polyaniline-based conducting hydrogels. J Mater Sci 54:974–996. https://doi.org/10.1007/s10853-018-2977-x

    Article  CAS  Google Scholar 

  9. Deng Z, Wang H, Ma PX, Guo B (2020) Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale 12(3):1224–1246. https://doi.org/10.1039/C9NR09283H

    Article  CAS  Google Scholar 

  10. Shuai L, Guo ZH, Zhang P, Wan J, Pu X, Wang ZL (2020) Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 78:105389. https://doi.org/10.1016/j.nanoen.2020.105389

    Article  CAS  Google Scholar 

  11. Tang L, Wu S, Qu J, Gong L, Tang J (2020) A review of conductive hydrogel used in flexible strain sensor. Materials (Basel) 13(18):3947. https://doi.org/10.3390/ma13183947

    Article  CAS  Google Scholar 

  12. Chen Z, Chen Y, Hedenqvist MS et al (2021) Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B 9(11):2561–2583. https://doi.org/10.1039/d0tb02929g

    Article  CAS  Google Scholar 

  13. Shi G, Zhao Z, Pai J-H et al (2016) Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv Funct Mater 26(42):7614–7625. https://doi.org/10.1002/adfm.201602619

    Article  CAS  Google Scholar 

  14. Han L, Lu X, Wang M et al (2017) A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 13(2):1601916. https://doi.org/10.1002/smll.201601916

    Article  CAS  Google Scholar 

  15. Liu Y, Hu Y, Zhao J, Wu G, Tao X, Chen W (2016) Self-powered piezoionic strain sensor toward the monitoring of human activities. Small 12(36):5074–5080. https://doi.org/10.1002/smll.201600553

    Article  CAS  Google Scholar 

  16. Wu X, Han Y, Zhang X, Lu C (2016) Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoring. ACS Appl Mater Interfaces 8(15):9936–9945. https://doi.org/10.1021/acsami.6b01174

    Article  CAS  Google Scholar 

  17. Dagdeviren C, Su Y, Joe P et al (2014) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 5(1):4496. https://doi.org/10.1038/ncomms5496

    Article  CAS  Google Scholar 

  18. Rus D, Tolley MT (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475. https://doi.org/10.1038/nature14543

    Article  CAS  Google Scholar 

  19. Naficy S, Razal J, Spinks G, Wallace G, Whitten P (2012) Electrically conductive, tough hydrogels with pH sensitivity. Chem Mater 24:3425–3433. https://doi.org/10.1021/cm301666w

    Article  CAS  Google Scholar 

  20. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453. https://doi.org/10.1002/bit.25160

    Article  CAS  Google Scholar 

  21. Alam A, Meng Q, Shi G et al (2016) Electrically conductive, mechanically robust, pH-sensitive graphene/polymer composite hydrogels. Compos Sci Technol 127:119–126. https://doi.org/10.1016/j.compscitech.2016.02.024

    Article  CAS  Google Scholar 

  22. Tee BCK, Wang C, Allen R, Bao Z (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832. https://doi.org/10.1038/nnano.2012.192

    Article  CAS  Google Scholar 

  23. Kharaziha M, Shin SR, Nikkhah M et al (2014) Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35(26):7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014

    Article  CAS  Google Scholar 

  24. Yuk H, Lu B, Zhao X (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667. https://doi.org/10.1039/C8CS00595H

    Article  CAS  Google Scholar 

  25. Yang Y, Song Y, Bo X et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38(2):217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  CAS  Google Scholar 

  26. Bi S, Hou L, Dong W, Lu Y (2021) Multifunctional and ultrasensitive-reduced graphene oxide and pen ink/polyvinyl alcohol-decorated modal/spandex fabric for high-performance wearable sensors. ACS Appl Mater Interfaces 13(1):2100–2019. https://doi.org/10.1021/acsami.0c21075

    Article  CAS  Google Scholar 

  27. Qian Y, Zhou Y, Lu M et al (2021) Direct construction of catechol lignin for engineering long-acting conductive, adhesive, and UV-blocking hydrogel bioelectronics. Small Methods 5(5):2001311. https://doi.org/10.1002/smtd.202001311

    Article  CAS  Google Scholar 

  28. Han L, Yan L, Wang M et al (2018) Transparent, adhesive, and conductive hydrogel for soft bioelectronics based on light-transmitting polydopamine-doped polypyrrole nanofibrils. Chem Mater 30(16):5561–5572. https://doi.org/10.1021/acs.chemmater.8b01446

    Article  CAS  Google Scholar 

  29. Kakade B, Mehta R, Durge A, Kulkarni S, Pillai V (2008) Electric field induced, superhydrophobic to superhydrophilic switching in multiwalled carbon nanotube papers. Nano Lett 8(9):2693–2696. https://doi.org/10.1021/nl801012r

    Article  CAS  Google Scholar 

  30. Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22(12):3120–3125. https://doi.org/10.1016/j.bios.2007.02.001

    Article  CAS  Google Scholar 

  31. Coleman JN, Dalton AB, Curran S et al (2000) Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv Mater 12(3):213–216. https://doi.org/10.1002/(SICI)15214095(200002)12:3%3c213::AIDADMA213%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  32. Cheng H-M, Yang Q-H, Liu C (2001) Hydrogen storage in carbon nanotubes. Carbon 39(10):1447–1454. https://doi.org/10.1016/S0008-6223(00)00306-7

    Article  CAS  Google Scholar 

  33. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A Gen 253(2):337–358. https://doi.org/10.1016/S0926-860X(03)00549-0

    Article  CAS  Google Scholar 

  34. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X

    Article  CAS  Google Scholar 

  35. Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16(3):357–363. https://doi.org/10.1002/adfm.200500142

    Article  CAS  Google Scholar 

  36. Yaping S, Fu K, Lin Y, Huang W (2003) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104. https://doi.org/10.1021/ar010160v

    Article  CAS  Google Scholar 

  37. Liang F, Sadana A, Peera A et al (2004) A convenient route to functionalized carbon nanotubes. Nano Lett 4(7):1257–1260. https://doi.org/10.1021/nl049428c

    Article  CAS  Google Scholar 

  38. Ling Y, Li W, Wang B et al (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6(37):31037–31045. https://doi.org/10.1039/C5RA26539H

    Article  CAS  Google Scholar 

  39. Lee M, Ku SH, Ryu J, Park C (2010) Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. J Mater Chem 20:8848–8853. https://doi.org/10.1039/c0jm01339k

    Article  CAS  Google Scholar 

  40. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822. https://doi.org/10.1021/cr500304f

    Article  CAS  Google Scholar 

  41. MarchesanS BS, Alshatwi A, Prato M (2016) Carbon nanotubes for organ regeneration: an electrifying performance. Nano Today 11(4):398–401. https://doi.org/10.1016/j.nantod.2015.11.007

    Article  CAS  Google Scholar 

  42. Mehrali M, Thakur A, Pennisi CP et al (2017) Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv Mater 29(8):1603612. https://doi.org/10.1002/adma.201603612

    Article  CAS  Google Scholar 

  43. Hajian A, Lindström SB, Pettersson T, Hamedi MM, Wågberg L (2017) Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett 17(3):1439–1447. https://doi.org/10.1021/acs.nanolett.6b04405

    Article  CAS  Google Scholar 

  44. Subramanian AS, Tey JN, Zhang L et al (2016) Synergistic bond strengthening in epoxy adhesives using polydopamine/MWCNT hybrids. Polymer 82:285–294. https://doi.org/10.1016/j.polymer.2015.11.031

    Article  CAS  Google Scholar 

  45. Wang Y, Xiong Y, Qu J, Qu J, Li S (2016) Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sens Actuators B Chem 223:501–508. https://doi.org/10.1016/j.snb.2015.09.117

    Article  CAS  Google Scholar 

  46. Yang X, He Y, Zeng G et al (2017) Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation. Chem Eng J 321:245–256. https://doi.org/10.1016/j.cej.2017.03.106

    Article  CAS  Google Scholar 

  47. Jang K-I, Chung HU, Xu S et al (2015) Soft network composite materials with deterministic and bio-inspired designs. Nat Commun 6(1):6566. https://doi.org/10.1038/ncomms7566

    Article  CAS  Google Scholar 

  48. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158. https://doi.org/10.1002/adma.200304907

    Article  CAS  Google Scholar 

  49. Yang J, Li Y, Zhu L, Qin G, Chen Q (2018) Double network hydrogels with controlled shape deformation: a mini review. J Polym Sci Part B Polym Phys 56(19):1351–1362. https://doi.org/10.1002/polb.24735

    Article  CAS  Google Scholar 

  50. Grieshaber SE, Farran AJE, Lin-Gibson S, Kiick KL, Jia X (2009) Synthesis and characterization of elastin−mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 42(7):2532–2541. https://doi.org/10.1021/ma802791z

    Article  CAS  Google Scholar 

  51. Zhang Q, Liu X, Duan L, Gao G (2020) Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. J Mater Chem A 8(8):4515–4532. https://doi.org/10.1039/C9TA14224J

    Article  CAS  Google Scholar 

  52. Ra Li, FanT CG, Xie H, Su B, He M (2020) Highly transparent, self-healing conductive elastomers enabled by synergistic hydrogen bonding interactions. Chem Eng J 393:124685. https://doi.org/10.1016/j.cej.2020.124685

    Article  CAS  Google Scholar 

  53. Lu N, Lu C, Yang S, Rogers J (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater 22(19):4044–4050. https://doi.org/10.1002/adfm.201200498

    Article  CAS  Google Scholar 

  54. Duan J, Liang X, Guo J, Zhu K, Zhang L (2016) Ultra-stretchable and force-sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks. Adv Mater (Deerfield Beach, Fla) 28(36):8037–8044. https://doi.org/10.1002/adma.201602126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (11802197) and Key R&D Program of Shanxi Province (International Cooperation, 201903D421064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinchun Hu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Hu, Y., Cheng, Y. et al. An electrically conductive polyvinyl alcohol/poly (acrylic acid-co-acrylamide)/polydopamine-decorated carbon nanotubes composite hydrogel with appropriate mechanical properties for human movement monitoring. J Mater Sci 57, 12947–12959 (2022). https://doi.org/10.1007/s10853-022-07435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07435-x

Navigation