Skip to main content
Log in

The influence of laser powder-bed fusion microstructures on the corrosion behavior of CuSn alloy

  • Innovation in Materials Processing
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM), a laser powder-bed fusion technique, shows unique heterogeneous microstructures because of the complex thermal history they experience during layer-wise part fabrication. The current work attempts to establish the influence of these microstructures on the corrosion behavior of the SLM processed CuSn alloy. The as-built SLM samples showed heterogeneous epitaxial columnar grains, fine cellular dislocation structure (~ 600 nm) with cell boundaries having higher dislocation density and solute Sn concentration than the cell interior, super-saturated solid-solution with ~ 6.5 wt% of Sn in Cu, and fine second-phase δ (Cu41Sn11) ~ 200 nm. The SLM microstructures affected the corrosion behavior of the CuSn alloy: the as-built samples showed high corrosion rate than the post-SLM heat-treated fully recrystallized samples. The effects of the residual stresses, cellular segregation, and second-phase δ (Cu41Sn11) on the corrosion behavior are minimal. The dislocation density and distribution primarily control the corrosion behavior of the SLM processed CuSn alloy. The partially recrystallized microstructures with heterogeneous dislocation distribution showed an increased corrosion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Davis J (2001) ASM specialty handbook: copper and copper alloys. ASM International, Materials Park, OH, USA

    Google Scholar 

  2. Kim Y-Y, Kim H-S (2019) Prediction of grain structure of thin bronze slab produced by horizontal continuous casting. Met Mater Int 25:465–472

    Article  CAS  Google Scholar 

  3. Karthik M, Abhinav J, Shankar KV (2021) Morphological and mechanical behaviour of Cu–Sn alloys—a review. Met Mater Int 27:1915–1946

    Article  CAS  Google Scholar 

  4. Robbiola L, Blengino JM, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros Sci 40:2083–2111

    Article  CAS  Google Scholar 

  5. Chang T, Herting G, Goidanich S, Sánchez Amaya JM, Arenas MA, Le Bozec N, Jin Y, Leygraf C, Odnevall Wallinder I (2019) The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corros Sci 149:54–67

    Article  CAS  Google Scholar 

  6. Haftlang F, Kim HS (2021) A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing. Mater & Des 211:110161

    Article  CAS  Google Scholar 

  7. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components - process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  8. Kannan R, Nandwana P (2021) Thermodynamics and kinetics of precipitation and austenite reversion during aging of Ti-free grade 300 maraging steel manufactured by laser powder bed fusion (LPBF). J Mater Sci 56:18722–18739

    Article  CAS  Google Scholar 

  9. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360

    Article  Google Scholar 

  10. Zafar MQ, Zhao HY (2020) 4D printing: future insight in additive manufacturing. Met Mater Int 26:564–585

    Article  Google Scholar 

  11. Schmeiser F, Krohmer E, Wagner C, Schell N, Uhlmann E, Reimers W (2021) In situ microstructure analysis of Inconel 625 during laser powder bed fusion. J Mater Sci. https://doi.org/10.1007/s10853-021-06577-8

    Article  Google Scholar 

  12. Karthik GM, Kim HS (2021) Heterogeneous aspects of additive manufactured metallic parts: a review. Met Mater Int 27:1–39

    Article  CAS  Google Scholar 

  13. Song B, Zhao X, Li S, Han C, Wei Q, Wen S, Liu J, Shi Y (2015) Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review, Front. Mech Eng 10:111–125

    Google Scholar 

  14. Tran TQ, Chinnappan A, Lee JKY, Loc NH, Tran LT, Wang GJ, Kumar VV, Jayathilaka WADM, Ji DX, Doddamani M, Ramakrishna S (2019) 3D Printing of highly pure copper. Metals 9:756

    Article  CAS  Google Scholar 

  15. Scudino S, Unterdorfer C, Prashanth KG, Attar H, Ellendt N, Uhlenwinkel V, Eckert J (2015) Additive manufacturing of Cu-10Sn bronze. Mater Lett 156:202–204

    Article  CAS  Google Scholar 

  16. Wang J, Zhou XL, Li J, Brochu M, Zhao YF (2020) Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy. Addit Manuf 31:100921

    CAS  Google Scholar 

  17. Tiberto D, Klotz UE, Held F, Wolf G (2019) Additive manufacturing of copper alloys: influence of process parameters and alloying elements. Mater Sci Technol 35:969–977

    Article  CAS  Google Scholar 

  18. Zeng C, Wen H, Bernard BC, Ding H, Raush JR, Gradl PR, Khonsari M, Guo S (2021) Tensile properties of additively manufactured C-18150 copper alloys. Met Mater Int 28:168–180

    Article  Google Scholar 

  19. Karthik GM, Sathiyamoorthi P, Zargaran A, Park JM, Asghari-Rad P, Son S, Park SH, Kim HS (2020) Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy. Materialia 13:100861

    Article  CAS  Google Scholar 

  20. Jeong SG, Karthik GM, Kim ES, Zargaran A, Ahn SY, Sagong MJ, Kang SH, Cho J-W, Kim HS (2022) Architectured heterogeneous alloys with selective laser melting. Scripta Mater 208:114332

    Article  CAS  Google Scholar 

  21. Karthik GM, Kim ES, Sathiyamoorthi P, Zargaran A, Jeong SG, Xiong R, Kang SH, Cho J-W, Kim HS (2021) Delayed deformation-induced martensite transformation and enhanced cryogenic tensile properties in laser additive manufactured 316L austenitic stainless steel. Addit Manuf 47:102314

    CAS  Google Scholar 

  22. Furtauer S, Li D, Cupid D, Flandorfer H (2013) The Cu-Sn phase diagram, part I: new experimental results. Intermetallics 34:142–147

    Article  CAS  Google Scholar 

  23. Kim JG, Seol JB, Park JM, Sung H, Park SH, Kim HS (2021) Effects of cell network structure on the strength of additively manufactured stainless steels. Met Mater Int 27:2614–2622

    Article  Google Scholar 

  24. Kong D, Dong C, Wei S, Ni X, Zhang L, Li R, Wang L, Man C, Li X (2021) About metastable cellular structure in additively manufactured austenitic stainless steels. Addit Manuf 38:101804

    CAS  Google Scholar 

  25. Bertsch KM, Meric de Bellefon G, Kuehl B, Thoma DJ (2020) Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L. Acta Mater 199:19–33

    Article  CAS  Google Scholar 

  26. Wang YM, Voisin T, McKeown JT, Ye J, Calta NP, Li Z, Zeng Z, Zhang Y, Chen W, Roehling TT, Ott RT, Santala MK, Depond PJ, Matthews MJ, Hamza AV, Zhu T (2018) Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17:63–71

    Article  CAS  Google Scholar 

  27. Zhong Y, Liu LF, Wikman S, Cui DQ, Shen ZJ (2016) Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 470:170–178

    Article  CAS  Google Scholar 

  28. Qiu C, Kindi MA, Aladawi AS, Hatmi IA (2018) A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci Rep 8:7785

    Article  Google Scholar 

  29. Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd 707:27–34

    Article  CAS  Google Scholar 

  30. Birnbaum AJ, Steuben JC, Barrick EJ, Iliopoulos AP, Michopoulos JG (2019) Intrinsic strain aging, Σ3 boundaries and origins of cellular substructure in additively manufactured 316L. Addit Manuf 29:100784

    CAS  Google Scholar 

  31. Wang G, Ouyang H, Fan C, Guo Q, Li ZQ, Yan WT, Li Z (2020) The origin of high-density dislocations in additively manufactured metals. Mater Res Lett 8:283–290

    Article  CAS  Google Scholar 

  32. Murr LE, Esquivel EV, Quinones SA, Gaytan SM, Lopez MI, Martinez EY, Medina F, Hernandez DH, Martinez E, Martinez JL, Stafford SW, Brown DK, Hoppe T, Meyers W, Lindhe U, Wicker RB (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V. Mater Charact 60:96–105

    Article  CAS  Google Scholar 

  33. Huang W, Chai L, Li Z, Yang X, Guo N, Song B (2016) Evolution of microstructure and grain boundary character distribution of a tin bronze annealed at different temperatures. Mater Charact 114:204–210

    Article  CAS  Google Scholar 

  34. Tsubakino H (1984) Discontinuous precipitation in a Cu-Sn alloy. Metallography 17:371–382

    Article  CAS  Google Scholar 

  35. Hamana D, Boumerzoug Z, Fatmi M, Chekroud S (1998) Discontinuous and continuous precipitation in Cu-13 wt.% Sn and Al-20 wt.% Ag alloys. Mater Chem Phys 53:208–216

    Article  CAS  Google Scholar 

  36. Karthik GM, Kim ES, Zargaran A, Sathiyamoorthi P, Jeong SG, Kim HS (2022) Role of cellular structure on deformation twinning and hetero-deformation induced strengthening of laser powder-bed fusion processed CuSn alloy. Addit Manuf 54:102744

    Article  CAS  Google Scholar 

  37. Zeng C, Zhang B, Hemmasian Ettefagh A, Wen H, Yao H, Meng WJ, Guo S (2020) Mechanical thermal and corrosion properties of Cu-10Sn alloy prepared by laser-powder-bed-fusion additive manufacturing. Addit Manuf 35:101411

    CAS  Google Scholar 

  38. Odnevall Wallinder I, Zhang X, Goidanich S, Le Bozec N, Herting G, Leygraf C (2014) Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate. Sci Total Environ 472:681–694

    Article  CAS  Google Scholar 

  39. Chen L, Richter B, Zhang X, Ren X, Pfefferkorn FE (2020) Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit Manuf 32:101013

    CAS  Google Scholar 

  40. Luo KY, Wang CY, Cui CY, Lu JZ, Lu YF (2019) Effects of coverage layer on the electrochemical corrosion behaviour of Mg-Al-Mn alloy subjected to massive laser shock peening treatment. J Alloys Compd 782:1058–1075

    Article  CAS  Google Scholar 

  41. Rosalbino F, Angelini E, Zanicchi G, Carlini R, Marazza R (2009) Electrochemical corrosion study of Sn–3Ag–3Cu solder alloy in NaCl solution. Electrochim Acta 54:7231–7235

    Article  CAS  Google Scholar 

  42. Zhang X, Odnevall Wallinder I, Leygraf C (2014) Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments. Corros Sci 85:15–25

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT), the Korean Institute of Energy Technology Evaluation and Planning (KETEP), and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (2021R1A2C3006662 and 20201510100030). Dr. GMK, Dr. FH, and Dr. PS are supported by the Brain Pool Program through the NRF of Korea, the Ministry of Science, and ICT (2019H1D3A1A01102866, 2020H1D3A1A04105882, 2017H1D3A1A01013666).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, G.M., Haftlang, F., Kwak, J. et al. The influence of laser powder-bed fusion microstructures on the corrosion behavior of CuSn alloy. J Mater Sci 57, 17923–17934 (2022). https://doi.org/10.1007/s10853-022-07137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07137-4

Navigation