Skip to main content

Advertisement

Log in

Engineering microstructure toward split-free mesophase pitch-based carbon fibers

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High alignment of graphene in mesophase pitch-based carbon fibers endows them with excellent properties such as high thermal conductivity and ultrahigh modulus. However, the weak interlayer interaction between large planar molecules leads to unwanted open crack in circular carbon fiber, leading to low strain-to-failure and low utilization rate in composite manufacturing. It remains a challenge to produce split-free circular carbon fiber while keeping a high degree of alignment of graphite layers. Herein, a die swell manipulating strategy is employed to address the problem through elaborating spinneret design. By applying an exit angle of 30° at the spinneret, the stored stress and shear-induced orientation of crystallites during the capillary flow were relaxed at the exit to enhance the die swell. The disoriented texture of fibers prevents the carbon fibers from splitting while still maintaining high degree of molecular alignment. The obtained carbon fibers present 20% higher of tensile strength, and more than twice of the compressive strength than the split ones, without sacrificing their superior thermal properties, which is up to 512 W·m−1·K−1. The work provides valuable insights into the design of carbon fiber for structural and functional integration materials in aerospace and beyond.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zuo P, Leistenschneider D, Kim Y, Ivey DG, Chen W (2021) The effect of thermal pretreatment temperature on the diameters and mechanical properties of asphaltene-derived carbon fibers. J Mater Sci. https://doi.org/10.1007/s10853-021-06249-7

    Article  Google Scholar 

  2. Fan B, Liu Y, He D, Bai J (2017) Enhanced thermal conductivity for mesophase pitch-based carbon fiber/modified boron nitride/epoxy composites. Polymer 122:71–76. https://doi.org/10.1016/j.polymer.2017.06.060

    Article  CAS  Google Scholar 

  3. Shimanoe H, Mashio T, Nakabayashi K, Inoue T, Hamaguchi M, Miyawaki J, Mochida I, Yoon S-H (2020) Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber. Carbon 158:922–929. https://doi.org/10.1016/j.carbon.2019.11.082

    Article  CAS  Google Scholar 

  4. Ji T, Feng Y, Qin M, Li S, Zhang F, Lv F, Feng W (2018) Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 131:149–159. https://doi.org/10.1016/j.carbon.2018.02.002

    Article  CAS  Google Scholar 

  5. Zhai X, Liu J, Zhang Y, Fan Q, Li Z, Zhou Y (2019) Microcrystal structure evolution of mesophase pitch-based carbon fibers with enhanced oxidation resistance and tensile strength induced by boron doping. Ceram Int 45:11734–11738. https://doi.org/10.1016/j.ceramint.2019.03.049

    Article  CAS  Google Scholar 

  6. Huang D, Tan RX, Liu L, Ye C, Zhu SP, Fan Z, Zhang P, Wu H, Han F, Liu HB, Liu JS (2021) Preparation and properties of the three-dimensional highly thermal conductive carbon/carbon-silicon carbide composite using the mesophase-pitch-based carbon fibers and pyrocarbon as thermal diffusion channels. J Eur Ceram Soc 41:4438–4446. https://doi.org/10.1016/j.jeurceramsoc.2021.03.011

    Article  CAS  Google Scholar 

  7. Zhang XW, Meng YC, Fan BL, Ma ZK, Song HH (2019) Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent. Fuel 243:390–397. https://doi.org/10.1016/j.fuel.2019.01.114

    Article  CAS  Google Scholar 

  8. Wang L, Liu Z, Guo Q, Yang J, Dong X, Li D, Liu J, Shi J, Lu C, Liu L (2015) Structure of silicon-modified mesophase pitch-based graphite fibers. Carbon 94:335–341. https://doi.org/10.1016/j.carbon.2015.06.068

    Article  CAS  Google Scholar 

  9. Li WW, Kang HL, Xu J, Liu RG (2017) Effects of ultra-high temperature treatment on the microstructure of carbon fibers. Chin J Polym Sci 35:764–772. https://doi.org/10.1007/s10118-017-1922-9

    Article  CAS  Google Scholar 

  10. Wang J, Xiao Y, Inoue K, Kawai M, Xue Y (2019) Modeling of nonlinear response in loading-unloading tests for fibrous composites under tension and compression. Compos Struct 207:894–908. https://doi.org/10.1016/j.compstruct.2018.09.054

    Article  Google Scholar 

  11. Yang Z, Yan H (2020) Multiscale modeling and failure analysis of an 8-harness satin woven composite. Compos Struct 242:112186. https://doi.org/10.1016/j.compstruct.2020.112186

    Article  Google Scholar 

  12. Pinho S, Darvizeh R, Robinson P, Schuecker C, Camanho P (2012) Material and structural response of polymer-matrix fibre-reinforced composites. J Compos Mater 46:2313–2341. https://doi.org/10.1177/0021998312454478

    Article  Google Scholar 

  13. Ko S, Choi JE, Lee CW, Jeon YP (2020) Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers. Carbon Lett 30:35–44. https://doi.org/10.1007/s42823-019-00067-3

    Article  Google Scholar 

  14. Bermudez V, Ogale AA (2020) Adverse effect of mesophase pitch draw-down ratio on carbon fiber strength. Carbon. https://doi.org/10.1016/j.carbon.2020.06.062

    Article  Google Scholar 

  15. Kundu S, Ogale AA (2006) Rheostructural studies on a synthetic mesophase pitch during transient shear flow. Carbon 44:2224–2235

    Article  CAS  Google Scholar 

  16. Zhao J, Ouyang T, Yao X, Fei Y (2016) The effect of the spinning conditions on the structure of mesophase pitch-based carbon fibers by Taguchi method. Carbon letters 19:89–98. https://doi.org/10.5714/CL.2016.19.089

    Article  Google Scholar 

  17. Alway-Cooper RM, Anderson DP, Ogale AA (2013) Carbon black modification of mesophase pitch-based carbon fibers. Carbon 59:40–48. https://doi.org/10.1016/j.carbon.2013.02.048

    Article  CAS  Google Scholar 

  18. Zhang X, Ning S, Ma Z, Song H, Wang D, Zhang M, Fan B, Zhang S, Yan X (2020) The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities. Carbon 156:499–505. https://doi.org/10.1016/j.carbon.2019.09.085

    Article  CAS  Google Scholar 

  19. Ogale AA, Edie DD, Rao AM (2004) Mesophase pitch-based carbon fibers with carbon nanotube reinforcements. US

  20. Mochida I, Yoon SH, Korai Y (1993) Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles. J Mater Sci 28:2331–2336. https://doi.org/10.1007/BF01151662

    Article  CAS  Google Scholar 

  21. Yoon SH, Takano N, Korai Y, Mochida I (1997) Crack formation in mesophase pitch-based carbon fibres: Part I Some influential factors for crack formation. J Mater Sci 32:2753–2758. https://doi.org/10.1023/A:1018699711846

    Article  CAS  Google Scholar 

  22. Cho T, Lee YS, Rao R, Rao AM, Edie DD, Ogale AA (2003) Structure of carbon fiber obtained from nanotube-reinforced mesophase pitch. Carbon 41:1419–1424. https://doi.org/10.1016/s0008-6223(03)00086-1

    Article  CAS  Google Scholar 

  23. Yao Y, Chen J, Liu L, Dong Y, Liu A (2014) Mesophase pitch-based carbon fiber spinning through a filter assembly and the microstructure evolution mechanism. J Mater Sci 49:191–198. https://doi.org/10.1007/s10853-013-7692-z

    Article  CAS  Google Scholar 

  24. Yuan G, Li X, Dong Z, Xiong X, Rand B, Cui Z, Ye C, Jiang Z, Li Y, Zhang Z (2014) Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68:413–425. https://doi.org/10.1016/j.carbon.2013.11.018

    Article  CAS  Google Scholar 

  25. Hayes GJ, Edie DD, Kennedy JM (1993) The recoil compressive strength of pitch-based carbon fibres. J Mater Sci 28:3247–3257. https://doi.org/10.1007/BF00354243

    Article  CAS  Google Scholar 

  26. Lavin JG, Boyington DR, Lahijani J, Nystem B, Issi JP (1993) The correlation of thermal conductivity with electrical resistivity in mesophase pitch-based carbon fiber. Carbon 31:1001–1002. https://doi.org/10.1016/0008-6223(93)90207-Q

    Article  CAS  Google Scholar 

  27. Yao Y, Chen J, Ling L, Dong Y, Liu A (2012) Tailoring structures and properties of mesophase pitch-based carbon fibers based on isotropic/mesophase incompatible blends. J Mater Sci 47:5509–5516. https://doi.org/10.1007/s10853-012-6442-y

    Article  CAS  Google Scholar 

  28. Liua Amp Y, Kumara S (2012) Recent progress in fabrication, structure, and properties of carbon fibers. Polym Rev. 52(234):258. https://doi.org/10.1080/15583724.2012.705410

    Article  CAS  Google Scholar 

  29. Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 46:189–195. https://doi.org/10.1016/j.carbon.2007.11.001

    Article  CAS  Google Scholar 

  30. Qin X, Lu Y, Xiao H, Wen Y, Yu T (2012) A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon 50:4459–4469. https://doi.org/10.1016/j.carbon.2012.05.024

    Article  CAS  Google Scholar 

  31. Lim TH, Yeo SY (2017) Investigation of the degradation of pitch-based carbon fibers properties upon insufficient or excess thermal treatment. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-05192-5

    Article  CAS  Google Scholar 

  32. Ogale AA, Lin C, Anderson DP, Kearns KM (2002) Orientation and dimensional changes in mesophase pitch-based carbon fibers. Carbon 40:1309–1319. https://doi.org/10.1016/S0008-6223(01)00300-1

    Article  CAS  Google Scholar 

  33. Matsumoto M, Iwashita T, Arai Y, Tomioka T (1993) Effect of spinning conditions on structures of pitch-based carbon fiber. Carbon 31:715–720. https://doi.org/10.1016/0008-6223(93)90008-X

    Article  CAS  Google Scholar 

  34. Emmerich FG (2014) Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers. Carbon 79:274–293. https://doi.org/10.1016/j.carbon.2014.07.068

    Article  CAS  Google Scholar 

  35. Aldosari SM, Khan M, Rahatekar S (2020) Manufacturing carbon fibres from pitch and polyethylene blend precursors: a review. J Mark Res 9:7786–7806. https://doi.org/10.1016/j.jmrt.2020.05.037

    Article  CAS  Google Scholar 

  36. Ahn YR, Lee YS, Ogale AA, Yun CH, Park CR (2006) Compressional behavior of carbon nanotube reinforced mesophase pitch-based carbon fibers. Fibers and Polym 7:85–87. https://doi.org/10.1007/BF02933609

    Article  CAS  Google Scholar 

  37. Lu S, Blanco C, Rand B (2002) Large diameter carbon fibres from mesophase pitch. Carbon 40:2109–2116. https://doi.org/10.1016/S0008-6223(02)00060-X

    Article  CAS  Google Scholar 

  38. Newcomb BA (2016) Processing, structure, and properties of carbon fibers. Compos Part A: Applied Manufactur 91:262–282. https://doi.org/10.1016/j.compositesa.2016.10.018

    Article  CAS  Google Scholar 

  39. Kundu S, Ogale AA (2010) Rheostructural studies of a discotic mesophase pitch at processing flow conditions. Rheol Acta 49:845–854. https://doi.org/10.1007/s00397-010-0448-7

    Article  CAS  Google Scholar 

  40. Zhao J, Ouyang T, Yao X, Fei Y (2016) Die swell behavior of liquid crystalline mesophase pitch. J Mater Sci 51:7361–7369. https://doi.org/10.1007/s10853-016-0025-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No.: 531118010508), Special Fund for Innovative Construction Province of Hunan (Grant No.: 2019RS2058, 2020RC3075, 2020GK4029), China Postdoctoral Science Foundation (Grant No.: 2020M672480), the National Natural Science Foundation of China (Grant No.: 52002104), the independent research projects for State Key Laboratory of Advanced Design and Manufacturing for vehicle body (Grant No.: 62065001), and the Science and Technology Planning Project of Changsha (Grant No.: kh2003018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Ye, Shipeng Zhu or Jinshui Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Huang, D., Ye, C. et al. Engineering microstructure toward split-free mesophase pitch-based carbon fibers. J Mater Sci 57, 2411–2423 (2022). https://doi.org/10.1007/s10853-021-06770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06770-9

Navigation