Skip to main content

Advertisement

Log in

Preparation of NaNbO3 nanoplates and their application in the synthesis of arylidene indan-1,3-diones, functionalized C-3 isobenzofuranones and Meldrum’s acid derivatives

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present investigation describes the preparation of a sodium niobate nanostructured material and the application of it as catalyst in condensation reactions. Well-defined NaNbO3 nanoplates were obtained via a basic hydrothermal process using Nb2O5·nH2O as starting material. The NaNbO3 nanostructured catalyst was characterized by scanning electron microscopy (SEM) and X-ray diffractometry (XRD), N2 adsorption/desorption isotherms, and hydrogen temperature-programmed reduction (H2-TPR) analysis. The performance of NaNbO3 as a catalyst was evaluated in condensation reactions for the preparation of 2-arylidene indan-1,3-diones, C-3 functionalized isobenzofuran-1(3H)-ones, Meldrum’s acid derivatives, and a coumarin. The products obtained in these reactions present several important bioactivities and are useful building blocks in organic synthesis. The condensation reactions were run under microwave irradiation and without the use of solvents. The compounds prepared in the condensation reactions were purified by recrystallization and obtained with satisfactory yields and short reaction times. The catalyst can be recycled in the condensation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Silveira JW, Resende M (2020) Competition in the international niobium market: a residual demand approach. Resour Policy 65:101564. https://doi.org/10.1016/j.resourpol.2019.101564

    Article  Google Scholar 

  2. Paquet N, Indiketi N, Dalencourt C et al (2019) Toxicity of tailing leachates from a niobium mine toward three aquatic organisms. Ecotoxicol Environ Saf 176:355–363. https://doi.org/10.1016/j.ecoenv.2019.03.065

    Article  CAS  Google Scholar 

  3. Bai Y, Deng Y, Zheng Y et al (2016) Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium–niobium alloy with low Young’s modulus. Mater Sci Eng C 59:565–576. https://doi.org/10.1016/j.msec.2015.10.062

    Article  CAS  Google Scholar 

  4. Vilaplana J, Romaguera C (1998) New developments in jewellery and dental materials. Contact Dermat 39:55–57. https://doi.org/10.1111/j.1600-0536.1998.tb05832.x

    Article  CAS  Google Scholar 

  5. Nowak I, Ziolek M (1999) Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99:3603–3624. https://doi.org/10.1021/cr9800208

    Article  CAS  Google Scholar 

  6. Ziolek M, Sobczak I (2017) The role of niobium component in heterogeneous catalysts. Catal Today 285:211–225. https://doi.org/10.1016/j.cattod.2016.12.013

    Article  CAS  Google Scholar 

  7. Nico C, Monteiro T, Graça MPF (2016) Niobium oxides and niobates physical properties: review and prospects. Prog Mater Sci 80:1–37. https://doi.org/10.1016/j.pmatsci.2016.02.001

    Article  CAS  Google Scholar 

  8. do Prado NT, Oliveira LCA (2017) Nanostructured niobium oxide synthetized by a new route using hydrothermal treatment: high efficiency in oxidation reactions. Appl Catal B Environ 205:481–488. https://doi.org/10.1016/j.apcatb.2016.12.067

    Article  CAS  Google Scholar 

  9. Sieber I, Hildebrand H, Friedrich A, Schmuki P (2005) Formation of self-organized niobium porous oxide on niobium. Electrochem commun 7:97–100. https://doi.org/10.1016/j.elecom.2004.11.012

    Article  CAS  Google Scholar 

  10. Zhang P, Wang M, Wang J et al (2018) Facile synthesis and characterization of low crystalline Nb2O5 ultrafine nanoparticles as a new efficient photocatalyst. J Non Cryst Solids 500:371–376. https://doi.org/10.1016/j.jnoncrysol.2018.08.026

    Article  CAS  Google Scholar 

  11. Shiratori Y, Magrez A, Dornseiffer J et al (2005) Polymorphism in micro-, submicro-, and nanocrystalline NaNbO3. J Phys Chem B 109:20122–20130. https://doi.org/10.1021/jp052974p

    Article  CAS  Google Scholar 

  12. Jia Y, Zhong M, Yang F et al (2020) Theoretical and experimental study on exciton properties of TT-, T-, and H-Nb2O5. J Phys Chem C 124:15066–15075. https://doi.org/10.1021/acs.jpcc.0c04202

    Article  CAS  Google Scholar 

  13. Sathasivam S, Williamson BAD, Althabaiti SA et al (2017) Chemical vapor deposition synthesis and optical properties of Nb2O5 thin films with hybrid functional theoretical insight into the band structure and band gaps. ACS Appl Mater Interfaces 9:18031–18038. https://doi.org/10.1021/acsami.7b00907

    Article  CAS  Google Scholar 

  14. Asencios YJO, Quijo MV, Marcos FCF et al (2019) Photocatalytic activity of Nb heterostructure (NaNbO3/Na2Nb4O11) and Nb/clay materials in the degradation of organic compounds. Sol Energy 194:37–46. https://doi.org/10.1016/j.solener.2019.10.005

    Article  CAS  Google Scholar 

  15. Sures D, Segado M, Bo C, Nyman M (2018) Alkali-driven disassembly and reassembly of molecular niobium oxide in water. J Am Chem Soc 140:10803–10813. https://doi.org/10.1021/jacs.8b05015

    Article  CAS  Google Scholar 

  16. Zhou C, Shi R, Waterhouse GIN, Zhang T (2020) Recent advances in niobium-based semiconductors for solar hydrogen production. Coord Chem Rev 419:213399. https://doi.org/10.1016/j.ccr.2020.213399

    Article  CAS  Google Scholar 

  17. Ji S, Liu H, Sang Y et al (2014) Synthesis, structure, and piezoelectric properties of ferroelectric and antiferroelectric NaNbO3 nanostructures. CrystEngComm 16:7598–7604. https://doi.org/10.1039/C4CE01116C

    Article  CAS  Google Scholar 

  18. Pan Z, Yao L, Ge G et al (2018) High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites. J Mater Chem A 6:14614–14622. https://doi.org/10.1039/C8TA03084G

    Article  CAS  Google Scholar 

  19. Farooq U, Phul R, Alshehri SM et al (2019) Electrocatalytic and enhanced photocatalytic applications of sodium niobate nanoparticles developed by citrate precursor route. Sci Rep 9:4488. https://doi.org/10.1038/s41598-019-40745-w

    Article  CAS  Google Scholar 

  20. Yang F, Zhang Q, Zhang L et al (2019) Facile synthesis of highly efficient Pt/N-rGO/N-NaNbO3 nanorods toward photocatalytic hydrogen production. Appl Catal B Environ 257:117901. https://doi.org/10.1016/j.apcatb.2019.117901

    Article  CAS  Google Scholar 

  21. Yang F, Zhang Q, Zhang J et al (2020) Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-Scheme photocatalytic hydrogen evolution. Appl Catal B Environ 278:119290. https://doi.org/10.1016/j.apcatb.2020.119290

    Article  CAS  Google Scholar 

  22. You H, Wu Z, Wang L et al (2018) Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition. Chemosphere 199:531–537. https://doi.org/10.1016/j.chemosphere.2018.02.059

    Article  CAS  Google Scholar 

  23. Liu Q, Zhang L, Chai Y, Dai W-L (2017) Facile fabrication and mechanism of single-crystal sodium niobate photocatalyst: insight into the structure features influence on photocatalytic performance for H2 evolution. J Phys Chem C 121:25898–25907. https://doi.org/10.1021/acs.jpcc.7b08819

    Article  CAS  Google Scholar 

  24. Kumar D, Singh S, Khare N (2018) Plasmonic Ag nanoparticles decorated NaNbO3 nanorods for efficient photoelectrochemical water splitting. Int J Hydrog Energy 43:8198–8205. https://doi.org/10.1016/j.ijhydene.2018.03.075

    Article  CAS  Google Scholar 

  25. Wang S, Wu Z, Chen J et al (2019) Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation. Ceram Int 45:11703–11708. https://doi.org/10.1016/j.ceramint.2019.03.045

    Article  CAS  Google Scholar 

  26. Chen W, Hu Y, Ba M (2018) Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis. Appl Surf Sci 435:483–493. https://doi.org/10.1016/j.apsusc.2017.11.115

    Article  CAS  Google Scholar 

  27. Pires DAT, Guedes IA, Pereira WL et al (2021) Isobenzofuran-1(3H)-ones as new tyrosinase inhibitors: biological activity and interaction studies by molecular docking and NMR. Biochim Biophys Acta—Proteins Proteomics 1869:140580. https://doi.org/10.1016/j.bbapap.2020.140580

    Article  CAS  Google Scholar 

  28. Ribeiro IML, Pereira WL, Nogueira LB et al (2020) Neuroprotective effect of isobenzofuranones on hydrogen peroxide-mediated redox imbalance in primary cultures of hippocampal neurons. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2020190072

    Article  Google Scholar 

  29. Teixeira R, Bressan G, Pereira W et al (2013) Synthesis and antiproliferative activity of C-3 functionalized isobenzofuran-1(3H)-ones. Molecules 18:1881–1896. https://doi.org/10.3390/molecules18021881

    Article  CAS  Google Scholar 

  30. Teixeira RR, Pereira WL, Tomaz DC et al (2013) Synthetic analogues of the natural compound cryphonectric acid interfere with photosynthetic machinery through two different mechanisms. J Agric Food Chem 61:5540–5549. https://doi.org/10.1021/jf400698j

    Article  CAS  Google Scholar 

  31. Andreazza Costa MC, Miguel Castro Ferreira M, Teixeira RR et al (2021) Synthesis, biological activity, and four-dimensional quantitative structure–activity analysis of 2-arylidene indan-1,3-dione derivatives tested against Daphnia magna. SAR QSAR Environ Res 32:133–150. https://doi.org/10.1080/1062936X.2020.1866070

    Article  CAS  Google Scholar 

  32. da Oliveira AFC, de Souza APM, de Oliveira AS et al (2018) Zirconium catalyzed synthesis of 2-arylidene Indan-1,3-diones and evaluation of their inhibitory activity against NS2B-NS3 WNV protease. Eur J Med Chem 149:98–109. https://doi.org/10.1016/j.ejmech.2018.02.037

    Article  CAS  Google Scholar 

  33. Pereira JL, Teixeira RR, Guilardi S et al (2012) 6-Methoxyisobenzofuran-1(3H)-one. Acta Cryst Sect 68:o2995. https://doi.org/10.1107/S1600536812039074

    Article  CAS  Google Scholar 

  34. dos Reis TA, Teixeira RR, Ribeiro IML et al (2020) Association of electroanalytical and spectrophotometric methods to evaluate the antioxidant activity of isobenzofuranone in primary cultures of hippocampal neurons. Toxicol Vitr 68:104970. https://doi.org/10.1016/j.tiv.2020.104970

    Article  CAS  Google Scholar 

  35. Rodrigues MP, Tomaz DC, Ângelo de Souza L et al (2019) Synthesis of cinnamic acid derivatives and leishmanicidal activity against Leishmania braziliensis. Eur J Med Chem 183:111688. https://doi.org/10.1016/j.ejmech.2019.111688

    Article  CAS  Google Scholar 

  36. de Oliveira AS, Gazolla PAR, da Oliveira AFC et al (2019) Discovery of novel West Nile Virus protease inhibitor based on isobenzonafuranone and triazolic derivatives of eugenol and indan-1,3-dione scaffolds. PLoS ONE 14:e0223017. https://doi.org/10.1371/journal.pone.0223017

    Article  CAS  Google Scholar 

  37. Pires DAT, Pereira WL, Teixeira RR et al (2016) Nuclear magnetic resonance (NMR), infrared (IR) and mass spectrometry (MS) study of keto-enol tautomerism of isobenzofuran-1(3H)-one derivatives. J Mol Struct 1113:146–152. https://doi.org/10.1016/j.molstruc.2016.02.015

    Article  CAS  Google Scholar 

  38. da Silva Maia AF, Siqueira RP, de Oliveira FM et al (2016) Synthesis, molecular properties prediction and cytotoxic screening of 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones. Bioorg Med Chem Lett 26:2810–2816. https://doi.org/10.1016/j.bmcl.2016.04.065

    Article  CAS  Google Scholar 

  39. Franca EF, Guilardi S, Paixão DA et al (2016) Centrosymmetric resonance-assisted intermolecular hydrogen bonding chains in the enol form of β-diketone: crystal structure and theoretical study. J Mol Graph Model 68:106–113. https://doi.org/10.1016/j.jmgm.2016.06.004

    Article  CAS  Google Scholar 

  40. Pereira W, de Souza VR, Mariotini-Moura C et al (2015) The Antileishmanial Potential of C-3 Functionalized Isobenzofuranones against Leishmania (Leishmania) Infantum Chagasi. Molecules 20:22435–22444. https://doi.org/10.3390/molecules201219857

    Article  CAS  Google Scholar 

  41. Teixeira RR, Pereira JL, Da Silva SF et al (2014) Synthesis, characterization and phytotoxic activity of hydroxylated isobenzofuran-1(3H)-ones. J Mol Struct 1061:61–68. https://doi.org/10.1016/j.molstruc.2013.12.059

    Article  CAS  Google Scholar 

  42. dos Reis FVE, Antonin VS, Hammer P et al (2015) Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J Catal 326:100–106. https://doi.org/10.1016/j.jcat.2015.04.007

    Article  CAS  Google Scholar 

  43. Rodrigues TS, eSilva FA, Candido EG et al (2019) Ethanol steam reforming: understanding changes in the activity and stability of Rh/MxOy catalysts as function of the support. J Mater Sci 54:11400–11416. https://doi.org/10.1007/s10853-019-03660-z

    Article  CAS  Google Scholar 

  44. Gualteros JAD, Garcia MAS, da Silva AGM et al (2019) Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. J Mater Sci 54:238–251. https://doi.org/10.1007/s10853-018-2827-x

    Article  CAS  Google Scholar 

  45. Liu Q, Chai Y, Zhang L et al (2017) Highly efficient Pt/NaNbO3 nanowire photocatalyst: its morphology effect and application in water purification and H2 production. Appl Catal B Environ 205:505–513. https://doi.org/10.1016/j.apcatb.2016.12.065

    Article  CAS  Google Scholar 

  46. Zhang J, Jiang T, Mai Y et al (2019) Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature. Catal Commun 127:10–14. https://doi.org/10.1016/j.catcom.2019.04.013

    Article  CAS  Google Scholar 

  47. Silva LPC, Freitas MM, Terra LE et al (2020) Preparation of CuO/ZnO/Nb2O5 catalyst for the water-gas shift reaction. Catal Today 344:59–65. https://doi.org/10.1016/j.cattod.2018.10.028

    Article  CAS  Google Scholar 

  48. Leal Marchena C, Saux C, Dinamarca R et al (2016) Alkaline niobates ANbO3 (A = Li, Na, K) as heterogeneous catalysts for dipropyl sulfide oxidation. RSC Adv 6:102015–102022. https://doi.org/10.1039/C6RA21749D

    Article  CAS  Google Scholar 

  49. Pecchi G, Cabrera B, Buljan A et al (2013) Catalytic oxidation of soot over alkaline niobates. J Alloys Compd 551:255–261. https://doi.org/10.1016/j.jallcom.2012.10.015

    Article  CAS  Google Scholar 

  50. Baeissa ES (2016) Photocatalytic degradation of malachite green dye using Au/NaNbO3 nanoparticles. J Alloys Compd 672:564–570. https://doi.org/10.1016/j.jallcom.2016.02.024

    Article  CAS  Google Scholar 

  51. Wulff G (1901) XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Krist - Cryst Mater 34: 449–530. Doi: https://doi.org/10.1524/zkri.1901.34.1.449

  52. He B, Wang J, Ma D et al (2018) Interaction of Pd single atoms with different CeO2 crystal planes: a first-principles study. Appl Surf Sci 433:1036–1048. https://doi.org/10.1016/j.apsusc.2017.10.134

    Article  CAS  Google Scholar 

  53. Wang W, Xiong Z, He W et al (2021) Influence of thiourea modification on the NH3-SCR activity of CeO2: Simultaneous tuning morphology and surface acidity. J Energy Inst 98:322–333. https://doi.org/10.1016/j.joei.2021.07.009

    Article  CAS  Google Scholar 

  54. Martra G (2000) Lewis acid and base sites at the surface of microcrystalline TiO2 anatase: relationships between surface morphology and chemical behaviour. Appl Catal A Gen 200:275–285. https://doi.org/10.1016/S0926-860X(00)00641-4

    Article  CAS  Google Scholar 

  55. Matsui M, Kimura R, Kubota Y et al (2017) Application of indoline dyes having a carboxylated 1,3-indandione ring linked with thienyl or hexylthienyl ring to dye-sensitized solar cells. Dye Pigment 147:50–55. https://doi.org/10.1016/j.dyepig.2017.07.009

    Article  CAS  Google Scholar 

  56. Du T, Gao R, Deng Y et al (2020) Indandione-terminated quinoids: facile synthesis by Alkoxide-mediated rearrangement reaction and semiconducting properties. Angew Chemie Int Ed 59:221–225. https://doi.org/10.1002/anie.201911530

    Article  CAS  Google Scholar 

  57. Asadi S, Mohammadi Ziarani G (2016) The molecular diversity scope of 1,3-indandione in organic synthesis. Mol Divers 20:111–152. https://doi.org/10.1007/s11030-015-9589-z

    Article  CAS  Google Scholar 

  58. Singh K (2016) Applications of Indan-1,3-Dione in heterocyclic synthesis. Curr Org Synth 13:385–407

    Article  CAS  Google Scholar 

  59. Pluskota R, Koba M (2018) Indandione and Its derivatives—chemical compounds with high biological potential. Mini-Rev Med Chem 18:1321–1330

    Article  CAS  Google Scholar 

  60. Jayatunga MKP, Thompson S, McKee TC et al (2015) Inhibition of the HIF1α-p300 interaction by quinone- and indandione-mediated ejection of structural Zn(II). Eur J Med Chem 94:509–516. https://doi.org/10.1016/j.ejmech.2014.06.006

    Article  CAS  Google Scholar 

  61. Watt BE, Proudfoot AT, Bradberry SM, Vale JA (2005) Anticoagulant rodenticides. Toxicol Rev 24:259–269. https://doi.org/10.2165/00139709-200524040-00005

    Article  CAS  Google Scholar 

  62. Amidi S, Kobarfard F, Bayandori Moghaddam A et al (2013) Electrochemical synthesis of novel 1,3-indandione derivatives and evaluation of their antiplatelet aggregation activities. Iran J Pharm Res IJPR 12:91–103

    CAS  Google Scholar 

  63. Leblois D, Piessard S, Le Baut G et al (1987) Pyrophtalones VII. Synthèse et activité anti-inflammatoire de (pyridinyl-4)-2 indanediones-1,3 substituées sur le noyau benzénique et/ou sur l’hétérocycle. Eur J Med Chem 22:229–238. https://doi.org/10.1016/0223-5234(87)90054-7

    Article  CAS  Google Scholar 

  64. Mishra CB, Manral A, Kumari S et al (2016) Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuroprotection properties against Alzheimer’s disease. Bioorg Med Chem 24:3829–3841. https://doi.org/10.1016/j.bmc.2016.06.027

    Article  CAS  Google Scholar 

  65. Jeyachandran M, Ramesh P (2011) Synthesis, Antimicrobial, and Anticoagulant Activities of 2-(Arylsulfonyl)indane-1,3-diones. Org Chem Int 2011:360810. https://doi.org/10.1155/2011/360810

    Article  CAS  Google Scholar 

  66. Wang Y, Liu H-X, Chen Y-C et al (2017) Two new metabolites from the endophytic fungus Alternaria sp. A744 derived from Morinda officinalis. Molecules 22:765. https://doi.org/10.3390/molecules22050765

    Article  CAS  Google Scholar 

  67. Misra R, Pandey RC, Hilton BD et al (1987) Structure of fredericamycin A, an antitumor antibiotic of a novel skeletal type; spectroscopic and mass spectral characterization. J Antibiot (Tokyo) 40:786–802. https://doi.org/10.7164/antibiotics.40.786

    Article  CAS  Google Scholar 

  68. Pandey RC, Toussaint MW, Stroshane RM et al (1981) Fredericamycin A, a new antitumor antibiotic. I. Production, isolation and physicochemical properties. J Antibiot (Tokyo) 34:1389–1401. https://doi.org/10.7164/antibiotics.34.1389

    Article  CAS  Google Scholar 

  69. Warnick-Pickle DJ, Byrne KM, Pandey RC, White RJ (1981) Fredericamycin A, a new antitumor antibiotic II Biolproperties. J Antibiot (Tokyo) 34:1402–1407. https://doi.org/10.7164/antibiotics.34.1402

    Article  CAS  Google Scholar 

  70. Mal D, Pahari P (2007) Recent advances in the Hauser annulation. Chem Rev 107:1892–1918. https://doi.org/10.1021/cr068398q

    Article  CAS  Google Scholar 

  71. Janikowska K, Rachoń J, Makowiec S (2014) Acyl Meldrum’s acid derivatives: application in organic synthesis. Russ Chem Rev 83:620–637. https://doi.org/10.1070/rc2014v083n07abeh004441

    Article  Google Scholar 

  72. Jameel E, Umar T, Kumar J, Hoda N (2016) Coumarin: a privileged scaffold for the design and development of Antineurodegenerative agents. Chem Biol Drug Des 87:21–38. https://doi.org/10.1111/cbdd.12629

    Article  CAS  Google Scholar 

  73. Grover J, Jachak SM (2015) Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv 5:38892–38905. https://doi.org/10.1039/C5RA05643H

    Article  CAS  Google Scholar 

  74. Stefanachi A, Leonetti F, Pisani L et al (2018) Coumarin: a natural, privileged and Versatile Scaffold for bioactive compounds. Molecules 23:250. https://doi.org/10.3390/molecules23020250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). T.S.R. thanks FAPERJ (Grant number: E-26/201.431/2021) for the financial support. F.A.S. thanks FAPERJ for his fellowship. We are also grateful to the Center of Multidisciplinary Research (UFRJ-Caxias Campus) for the access to the electron microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thenner Silva Rodrigues or Róbson Ricardo Teixeira.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6502 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.F., Silva, F.A.e., de Souza, A.P.M. et al. Preparation of NaNbO3 nanoplates and their application in the synthesis of arylidene indan-1,3-diones, functionalized C-3 isobenzofuranones and Meldrum’s acid derivatives. J Mater Sci 57, 1669–1688 (2022). https://doi.org/10.1007/s10853-021-06725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06725-0

Navigation