Skip to main content

Advertisement

Log in

Enhanced thermal conductivity of PP hybrid films induced by filler orientation and laminated structure

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Currently, polymeric composites with good thermal conductivity and simple preparation method are in the rapid increment of demand. In this work, polypropylene/graphite/graphene films (PP/Gr/G-3, 8 layers) with high thermal conductivity were developed by a multi-folding and hot-pressing strategy. The PP/Gr/G-3 composite films exhibit highly in-plane thermal conductivity of 17.23 W m−1·K−1 (TCE = 99.19%, compared with the PP/Gr/G-0 films). This high thermal conductivity is mainly due to the well-oriented structure of fillers and tightly laminated microstructure in composite which are induced by the facile and scalable multi-folding method. Additionally, the PP/Gr/G-3 composite films demonstrate enhanced mechanical properties with the tensile strength of ~ 26.26 MPa and toughness of ~ 0.52 MJ m−3. The effective fabrication strategy proposed in this work could be valuable for improving the thermal management properties of polymeric composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ohayon-Lavi A, Buzaglo M, Ligati S, Peretz-Damari S, Shachar G, Pinsk N, Riskin M, Schatzberg Y, Genish I, Regev O (2020) Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon 163:333–340. https://doi.org/10.1016/j.carbon.2020.03.026

    Article  CAS  Google Scholar 

  2. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  CAS  Google Scholar 

  3. Wang D, Lin Y, Hu D, Jiang P, Huang X (2020) Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos Pt A-Appl Sci Manuf 130:105754. https://doi.org/10.1016/j.compositesa.2019.105754

    Article  CAS  Google Scholar 

  4. Jang J-u, Lee SH, Kim J, Kim SY, Kim SH (2021) Nano-bridge effect on thermal conductivity of hybrid polymer composites incorporating 1D and 2D nanocarbon fillers. Compos B Eng 222:109072. https://doi.org/10.1016/j.compositesb.2021.109072

    Article  CAS  Google Scholar 

  5. Chen J, Huang X, Zhu Y, Jiang P (2017) Cellulose nanofiber supported 3D interconnected bn nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27:1604754. https://doi.org/10.1002/adfm.201604754

    Article  CAS  Google Scholar 

  6. Guo L, Zhang Z, Li M, Kang R, Chen Y, Song G, Han S-T, Lin C-T, Jiang N, Yu J (2020) Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying. Compos Commun 19:134–141. https://doi.org/10.1016/j.coco.2020.03.009

    Article  Google Scholar 

  7. Wei Q, Pei S, Qian X, Liu H, Liu Z, Zhang W, Zhou T, Zhang Z, Zhang X, Cheng HM, Ren W (2020) Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv Mater 32(14):e1907411. https://doi.org/10.1002/adma.201907411

    Article  CAS  Google Scholar 

  8. Guo Y, Ruan K, Shi X, Yang X, Gu J (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134. https://doi.org/10.1016/j.compscitech.2020.108134

    Article  CAS  Google Scholar 

  9. He H, Zhang Y, Zeng X, Ye Z, Zhang C, Liang T, Li J, Hu Q, Zhang P (2021) Thermally conductive and stretchable thermal interface materials prepared via vertical orientation of flake graphite. Compos Commun 27:100795. https://doi.org/10.1016/j.coco.2021.100795

    Article  Google Scholar 

  10. Lin Y, Chen J, Dong S, Wu G, Jiang P, Huang X (2021) Wet-resilient graphene aerogel for thermal conductivity enhancement in polymer nanocomposites. J Mater Sci Technol 83:219–227. https://doi.org/10.1016/j.jmst.2020.12.051

    Article  Google Scholar 

  11. Guo F, Shen X, Zhou J, Liu D, Zheng Q, Yang J, Jia B, Lau AKT, Kim JK (2020) Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv Funct Mater, 1910826. https://doi.org/10.1002/adfm.201910826

  12. Alam FE, Dai W, Yang M, Du S, Li X, Yu J, Jiang N, Lin C-T (2017) In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J Mater Chem A 5:6164–6169. https://doi.org/10.1039/c7ta00750g

    Article  CAS  Google Scholar 

  13. Liang Z, Pei Y, Chen C, Jiang B, Yao Y, Xie H, Jiao M, Chen G, Li T, Yang B, Hu L (2019) General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13(11):12653–12661. https://doi.org/10.1021/acsnano.9b04202

    Article  CAS  Google Scholar 

  14. Song N, Hou X, Chen L, Cui S, Shi L, Ding P (2017) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. ACS Appl Mater Interfaces 9:17914–17922. https://doi.org/10.1021/acsami.7b02675

    Article  CAS  Google Scholar 

  15. Ma A, Wang X, Chen Y, Yu J, Zheng W, Zhao Y (2019) Largely enhanced thermal conductivity of ethylene-propylene-diene monomer composites by addition of graphene ball. Compos Commun 13:119–124. https://doi.org/10.1016/j.coco.2019.04.005

    Article  Google Scholar 

  16. Liu B, Li Y, Fei T, Han S, Xia C, Shan Z, Jiang J (2020) Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chem Eng J 385:123829. https://doi.org/10.1016/j.cej.2019.123829

    Article  CAS  Google Scholar 

  17. Qi X-d, Wang W-y, Xiao Y-j, Huang T, Zhang N, Yang J-h, Wang Y (2019) Tailoring the hybrid network structure of boron nitride/carbon nanotube to achieve thermally conductive poly(vinylidene fluoride) composites. Compos Commun 13:30–36. https://doi.org/10.1016/j.coco.2019.02.004

    Article  Google Scholar 

  18. Zhang X, Zhang J, Xia L, Li C, Wang J, Xu F, Zhang X, Wu H, Guo S (2017) Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl Mater Interfaces 9(27):22977–22984. https://doi.org/10.1021/acsami.7b05866

    Article  CAS  Google Scholar 

  19. Yao Y, Ye Z, Huang F, Zeng X, Zhang T, Shang T, Han M, Zhang W, Ren L, Sun R, Xu JB, Wong CP (2020) Composites part a-applied science and manufacturingachieving significant thermal conductivity enhancement via an ice-templated and sintered BN-SiC skeleton. ACS Appl Mater Interfaces 12(2):2892–2902. https://doi.org/10.1021/acsami.9b19280

    Article  CAS  Google Scholar 

  20. Jiang F, Cui X, Song N, Shi L, Ding P (2020) Synergistic effect of functionalized graphene/boron nitride on the thermal conductivity of polystyrene composites. Compos Commun 20. https://doi.org/10.1016/j.coco.2020.04.016

  21. Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597. https://doi.org/10.1016/j.carbon.2016.08.059

    Article  CAS  Google Scholar 

  22. Han J, Du G, Gao W, Bai H (2019) An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv Funct Mater 29(13):1900412. https://doi.org/10.1002/adfm.201900412

    Article  CAS  Google Scholar 

  23. Ren L, Zeng X, Sun R, Xu J-B, Wong C-P (2019) Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem Eng J 370:166–175. https://doi.org/10.1016/j.cej.2019.03.217

    Article  CAS  Google Scholar 

  24. Yan Q, Dai W, Gao J, Tan X, Lv L, Ying J, Lu X, Lu J, Yao Y, Wei Q, Sun R, Yu J, Jiang N, Chen D, Wong CP, Xiang R, Maruyama S, Lin CT (2021) Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano. https://doi.org/10.1021/acsnano.0c09229

    Article  Google Scholar 

  25. Lian G, Tuan C-C, Li L, Jiao S, Wang Q, Moon K-S, Cui D, Wong C-P (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104. https://doi.org/10.1021/acs.chemmater.6b01595

    Article  CAS  Google Scholar 

  26. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, DubonosI SV, Grigorieva V, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  27. Song N, Cao D, Luo X, Wang Q, Ding P, Shi L (2020) Highly thermally conductive polypropylene/graphene composites for thermal management. Compos Pt A-Appl Sci Manuf 135. https://doi.org/10.1016/j.compositesa.2020.105912

  28. Li M, Liu J, Zheng D, Zheng M, Zhao Y, Hu M, Yue GH, Shan G (2019) Enhanced dielectric permittivity and suppressed electrical conductivity in polyvinylidene fluoride nanocomposites filled with 4,4’-oxydiphenol-functionalized graphene. Nanotechnology 30(26):265705. https://doi.org/10.1088/1361-6528/ab0a50

    Article  CAS  Google Scholar 

  29. Liu S, Wang Y, Ming X, Xu Z, Liu Y, Gao C (2021) High-speed blow spinning of neat graphene fibrous materials. Nano Lett 21(12):5116–5125. https://doi.org/10.1021/acs.nanolett.1c01076

    Article  CAS  Google Scholar 

  30. Wu K, Liu D, Lei C, Xue S, Fu Q (2020) Is filler orientation always good for thermal management performance: a visualized study from experimental results to simulative analysis. Chem Eng J 394. https://doi.org/10.1016/j.cej.2020.124929

  31. Kashfipour MA, Dent RS, Mehra N, Yang X, Gu J, Zhu J (2019) Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. Compos Sci Technol 182. https://doi.org/10.1016/j.compscitech.2019.107715

  32. Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W (2020) Thermal conductivity of graphene-based polymer nanocomposites. Mater Sci Eng 142:100577. https://doi.org/10.1016/j.mser.2020.100577

    Article  Google Scholar 

  33. Yan Q, Alam FE, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT (2021) Soft and self‐adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv Funct Mater, 2104062. https://doi.org/10.1002/adfm.202104062

  34. Liu H, Gu S, Cao H, Li X, Li Y (2020) A dense packing structure constructed by flake and spherical graphite: simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites. Compos Commun 19:25–29. https://doi.org/10.1016/j.coco.2020.02.007

    Article  Google Scholar 

  35. Ullah S, Wang H, Liu B, Cheng J, Shan G, Zheng G-P (2019) The effects of additions of two-dimensional graphitic-C3N4 on the negative electro-caloric effects in P(VDF-TrFE) copolymers. RSC Adv 9(28):15917–15925. https://doi.org/10.1039/c9ra02428j

    Article  CAS  Google Scholar 

  36. Wang B, Li Z, Wang C, Signetti S, Cunning BV, Wu X, Huang Y, Jiang Y, Shi H, Ryu S, Pugno NM, Ruoff RS (2018) Folding large graphene-on-polymer films yields laminated composites with enhanced mechanical performance. Adv Mater 30 (35). https://doi.org/10.1002/adma.201707449

  37. Jin X, Wang J, Dai L, Liu X, Li L, Yang Y, Cao Y, Wang W, Wu H, Guo S (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem Eng J 380:122475. https://doi.org/10.1016/j.cej.2019.122475

    Article  CAS  Google Scholar 

  38. Zhang T, Sun J, Ren L, Yao Y, Wang M, Zeng X, Sun R, Xu J-B, Wong C-P (2019) Nacre-inspired polymer composites with high thermal conductivity and enhanced mechanical strength. Compos Pt A-Appl Sci Manuf 121:92–99. https://doi.org/10.1016/j.compositesa.2019.03.017

    Article  CAS  Google Scholar 

  39. Wu K, Yu L, Lei C, Huang J, Liu D, Liu Y, Xie Y, Chen F, Fu Q (2019) Green production of regenerated cellulose/boron nitride nanosheet textiles for static and dynamic personal cooling. ACS Appl Mater Interfaces 11(43):40685–40693. https://doi.org/10.1021/acsami.9b15612

    Article  CAS  Google Scholar 

  40. Guo Y, Pan L, Yang X, Ruan K, Han Y, Kong J, Gu J (2019) Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos Pt A-Appl Sci Manuf 124. https://doi.org/10.1016/j.compositesa.2019.105484

  41. Teng C, Su L, Chen J, Wang J (2019) Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets. Compos Pt A-Appl Sci Manuf, 124. https://doi.org/10.1016/j.compositesa.2019.105498

  42. Han X, Wu L, Zhang H, He A, Nie H (2019) Inorganic-organic hybrid janus fillers for improving the thermal conductivity of polymer composites. ACS Appl Mater Interfaces 11(13):12190–12194. https://doi.org/10.1021/acsami.8b22278

    Article  CAS  Google Scholar 

  43. Zhuang Y, Zheng K, Cao X, Fan Q, Ye G, Lu J, Zhang J, Ma Y (2020) Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 14(9):11733–11742. https://doi.org/10.1021/acsnano.0c04456

    Article  CAS  Google Scholar 

  44. Yuan J, Qian X, Meng Z, Yang B, Liu Z-Q (2019) Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl Mater Interfaces 11(19):17915–17924. https://doi.org/10.1021/acsami.9b06062

    Article  CAS  Google Scholar 

  45. Yuan F, Jiao W, Yang F, Liu W, Xu Z, Wang R (2017) Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Adv 7(69):43380–43389. https://doi.org/10.1039/c7ra08516h

    Article  CAS  Google Scholar 

  46. Tu H, Xie K, Lin X, Zhang R, Chen F, Fu Q, Duan B, Zhang L (2021) Superior strength and highly thermoconductive cellulose/boron nitride film by stretch-induced alignment. J Mater Chem A 9(16):10304–10315. https://doi.org/10.1039/d1ta00143d

    Article  CAS  Google Scholar 

  47. Chen L, Xiao C, Tang Y, Zhang X, Zheng K, Tian X (2019) Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity. Ceram Int 45(10):12965–12974. https://doi.org/10.1016/j.ceramint.2019.03.224

    Article  CAS  Google Scholar 

  48. Hussein A, Ramasundaram S, Kim B (2020) A novel method for fabricating bioinspired layered nanocomposites using aligned graphene oxide/PVDF and their micromechanical modeling. Mater Today Commun 24:101050. https://doi.org/10.1016/j.mtcomm.2020.101050

    Article  CAS  Google Scholar 

  49. Feng C-P, Wan S-S, Wu W-C, Bai L, Bao R-Y, Liu Z-Y, Yang M-B, Chen J, Yang W (2018) Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos Sci Technol 167:456–462. https://doi.org/10.1016/j.compscitech.2018.08.039

    Article  CAS  Google Scholar 

  50. Xin G, Zhu W, Deng Y, Cheng J, Zhang LT, Chung AJ, De S, Lian J (2019) Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol 14(2):168–175. https://doi.org/10.1038/s41565-018-0330-9

    Article  CAS  Google Scholar 

  51. Saeidijavash M, Garg J, Grady B, Smith B, Li Z, Young RJ, Tarannum F, Bel Bekri N (2017) High thermal conductivity through simultaneously aligned polyethylene lamellae and graphene nanoplatelets. Nanoscale 9(35):12867–12873. https://doi.org/10.1039/c7nr04686c

    Article  CAS  Google Scholar 

  52. Li P, Yang M, Liu Y, Qin H, Liu J, Xu Z, Liu Y, Meng F, Lin J, Wang F, Gao C (2020) Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat Commun 11(1):2645. https://doi.org/10.1038/s41467-020-16494-0

    Article  CAS  Google Scholar 

  53. Sangroniz L, van Drongelen M, Cardinaels R, Santamaria A, Peters GWM, Mueller AJ (2020) Effect of shear rate and pressure on the crystallization of PP nanocomposites and PP/PET polymer blend nanocomposites. Polymer 186. https://doi.org/10.1016/j.polymer.2019.121950

  54. Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411–420. https://doi.org/10.1016/j.cej.2013.10.030

    Article  CAS  Google Scholar 

  55. Guo H, Xu T, Zhou S, Jiang F, Jin L, Song N, Ding P (2021) A technique engineered for improving thermal conductive properties of polyamide-6 composites via hydroxylated boron nitride masterbatch-based melt blending. Compos B Eng 212:108716. https://doi.org/10.1016/j.compositesb.2021.108716

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (No. 51703122), the PetroChina Innovation Foundation (No. 2016D-5007-0508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Wang, P., Cao, D. et al. Enhanced thermal conductivity of PP hybrid films induced by filler orientation and laminated structure. J Mater Sci 57, 2540–2549 (2022). https://doi.org/10.1007/s10853-021-06664-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06664-w

Navigation