Skip to main content

Advertisement

Log in

Review: incorporation of organic PCMs into textiles

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) were characterized to adsorb/release the thermal energy during the phase transition process over a certain temperature range. The PCMs had been incorporated into textiles to enhance the thermal property and the products are labeled as PCM textiles. The thermal behavior of the PCM textiles (the PCM fibers, the PCM yarns, and the PCM fabrics) was investigated for decades. The application of the PCM textiles was also extended to various fields. Based on the numerous research work, the publications related to the PCM textiles were already summarized. However, it was found that some reviews tended to describe the application of the microencapsulation PCMs, and some reviews focused on the fabrication of the PCM ultrafine fibers via electrospinning. In addition, there are some novel technologies to fabricate the PCMs, the novel methods to evaluate the PCM textiles, and the novel applications of the PCM textiles in recent years. In this review, the recent research work related to PCM textiles was summarized, which was aimed to deepen the understanding of the PCM textiles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Abbreviations

AC:

Active carbon

AMA:

Methyl acrylate

BC:

Bamboo charcoal

BTCA:

Butane tetracarboxylic acid

BN:

Boron nitride

BN-OHs:

Hydroxylated boron nitride

BS:

Butyl stearate

CA:

Capric acid

CNF:

Cellulose nanofiber

CNT:

Carbon nanotube

CS:

Chitosan

DMDHEU:

Dimethyloldihydroxyethyleneurea

E:

Erythritol

EG:

Expanded graphite

FK-g-APEG:

Feather keratin-g-allyloxy polyethylene glycol

GHP:

Galactitol hexa-palmitate

GTL:

Glycerol trilaurate

HD:

Hexadecanol

LA:

Lauric acid

MA:

Myristic acid

MC:

Mesoporous carbon

MF:

Melamine formaldehyde

MP:

Methyl palmitate

MWCNT:

Multiwalled carbon nanotube

OA:

Oleic acid

PA:

Palmitic acid

PA 6:

Polyamide 6

PALMA:

Poly(allyl methacrylate)

PAN:

Polyacrylonitrile

P(AN-co-VDC):

Poly(acrylonitrile-co-vinylidene chloride)

PDDA:

Poly(diallyldimethylammonium chloride)

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

PES:

Polyethersulfone

PET:

Polyethylene terephthalate

PMIA:

Poly(meta-phenylene isophthalamide)

PMMA:

Poly(methyl methacrylate)

P(MMA-co-AA):

Poly(methyl methacrylate-co-acrylic acid)

PP:

Polypropylene

PSS:

Poly-4-styrenesulfonic acid

PUR:

Polyurethane

PUA:

Polyurea

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

PVP:

Polyvinylpyrrolidone

rGO:

Reduced graphene oxide

SA:

Stearic acid

SAN-g-PA:

Poly(styrene-co-acrylonitrile)/palmitic acid

SDS:

Sodium dodecyl sulfate

SIC:

Silicon carbide

SS:

Stainless steel

TD:

Tetradecyl alcohol

UF:

Urea formaldehyde

A :

The area of the sample through which the heat transfers (m2)

a :

Thermal diffusivity (m2 s1)

b :

Thermal absorptivity (W s1/2 m2 K1)

\(c_{p}\) :

Specific heat capacity (J kg1 K1)

\(\dot{g}\) :

Volumetric generation (W/m3)

h :

Convective heat transfer coefficient (W m2 K1)

k :

Thermal conductivity (W m1 K1)

L :

Distance or thickness of the sample along which the heat transfers (m)

\(\dot{q}\) :

Heat flux (W/m2)

r :

Thermal resistance (m2 K W1)

T :

Temperature (°C or K)

\(T_{w}\) :

Temperature of the wall (°C or K)

\(T_{\infty }\) :

Temperature of the fluid or ambient temperature (°C or K)

\(\varepsilon\) :

Surface emissivity

\(\sigma\) :

Stefan–Boltzmann constant (5.6704 \(\times\) 108 W m2 K4)

\(\rho\) :

Density of the materials (g/m3)

References

  1. Zhang N, Yuan Y, Cao X et al (2018) Latent heat thermal energy storage systems with solid-liquid phase change materials: a review. Adv Eng Mater 20:1700753. https://doi.org/10.1002/adem.201700753

    Article  CAS  Google Scholar 

  2. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energ Buildings 144:276–294. https://doi.org/10.1016/j.enbuild.2017.03.063

    Article  Google Scholar 

  3. Chalco-Sandoval W, Fabra MJ, López-Rubio A, Lagaron JM (2017) Use of phase change materials to develop electrospun coatings of interest in food packaging applications. J Food Eng 192:122–128. https://doi.org/10.1016/j.jfoodeng.2015.01.019

    Article  CAS  Google Scholar 

  4. Zhu C, Chen Y, Cong R et al (2021) Improved thermal properties of stearic acid/high density polyethylene/carbon fiber composite heat storage materials. Sol Energ Mat Sol C. https://doi.org/10.1016/j.solmat.2020.110782

    Article  Google Scholar 

  5. Iqbal K, Khan A, Sun D et al (2019) Phase change materials, their synthesis and application in textiles—a review. J Text Inst 110:625–638. https://doi.org/10.1080/00405000.2018.1548088

    Article  Google Scholar 

  6. Yang K, Wiener J, Venkataraman M et al (2021) Thermal analysis of PEG/metal particle-coated viscose fabric. Polym Test. https://doi.org/10.1016/j.polymertesting.2021.107231

    Article  Google Scholar 

  7. Peng H, Wang J, Zhang X et al (2021) A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.116326

    Article  Google Scholar 

  8. Qureshi ZA, Ali HM, Khushnood S (2018) Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review. Int J Heat Mass Tran 127:838–856. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.049

    Article  CAS  Google Scholar 

  9. Ran F, Chen Y, Cong R, Fang G (2020) Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110101

    Article  Google Scholar 

  10. Rehman T, Ali HM, Janjua MM et al (2019) A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Tran 135:649–673. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001

    Article  CAS  Google Scholar 

  11. Gadhave P, Pathan F, Kore S, Prabhune C (2021) Comprehensive review of phase change material based latent heat thermal energy storage system. Int J Ambient Energy. https://doi.org/10.1080/01430750.2021.1873848

    Article  Google Scholar 

  12. Safari A, Saidur R, Sulaiman FA et al (2017) A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev 70:905–919. https://doi.org/10.1016/j.rser.2016.11.272

    Article  CAS  Google Scholar 

  13. Prajapati DG, Kandasubramanian B (2020) A review on polymeric-based phase change material for thermo-regulating fabric application. Polym Rev 60:389–419. https://doi.org/10.1080/15583724.2019.1677709

    Article  CAS  Google Scholar 

  14. Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energ Convers Manage 150:304–330. https://doi.org/10.1016/j.enconman.2017.08.016

    Article  CAS  Google Scholar 

  15. Chandel SS, Agarwal T (2017) Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev 67:581–596. https://doi.org/10.1016/j.rser.2016.09.070

    Article  CAS  Google Scholar 

  16. N.PAN, P.Gibson (2006) Thermal and moisture transport in fibrous materials, 1st ed. Woodhead Publishing

  17. Militky J, Novak O, Kremenakova D et al (2021) A review of impact of textile research on protective face masks. Materials 14:1937. https://doi.org/10.3390/ma14081937

    Article  CAS  Google Scholar 

  18. Faheem S, Baheti V, Tunak M et al (2019) Flame resistance behavior of cotton fabrics coated with bilayer assemblies of ammonium polyphosphate and casein. Cellulose 26:3557–3574. https://doi.org/10.1007/s10570-019-02296-1

    Article  CAS  Google Scholar 

  19. Venkataraman M, Mishra R, Militky J et al (2018) Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym Advan Technol 29:2583–2592. https://doi.org/10.1002/pat.4369

    Article  CAS  Google Scholar 

  20. Khan MZ, Baheti V, Militky J et al (2018) Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics. Carbohyd Polym 202:571–580. https://doi.org/10.1016/j.carbpol.2018.08.145

    Article  CAS  Google Scholar 

  21. Yang T, Xiong X, Mishra R et al (2019) Sound absorption and compression properties of perpendicular-laid nonwovens. Text Res J 89:612–624. https://doi.org/10.1177/0040517517753634

    Article  CAS  Google Scholar 

  22. Yang K, Periyasamy AP, Venkataraman M et al (2020) Resistance against penetration of electromagnetic radiation for ultra-light Cu/Ni-coated polyester fibrous materials. Polymers-basel. https://doi.org/10.3390/polym12092029

    Article  Google Scholar 

  23. Zhang X, Jin Z, Hu L et al (2021) A silver yarn-incorporated song brocade fabric with enhanced electromagnetic shielding. Materials 14:3779. https://doi.org/10.3390/ma14143779

    Article  CAS  Google Scholar 

  24. Zhang X, Jin Z (2018) A kind of song brocade fabric with NFC data masking function used for making purse. Iop Conf Ser Mater Sci Eng 389:012037. https://doi.org/10.1088/1757-899x/389/1/012037

    Article  CAS  Google Scholar 

  25. Wang Y, Baheti V, Yang K et al (2021) Utility of whiskerized carbon fabric surfaces in resistive heating of composites. Polym Composite. https://doi.org/10.1002/pc.26012

    Article  Google Scholar 

  26. Periyasamy AP, Yang K, Xiong X et al (2020) Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122008

    Article  Google Scholar 

  27. Wani C, Loharkar PK (2017) A review of phase change materials as an alternative for solar thermal energy storage. Mater Today Proc 4:10264–10267. https://doi.org/10.1016/j.matpr.2017.06.361

    Article  Google Scholar 

  28. Mondal S (2008) Phase change materials for smart textiles—an overview. Appl Therm Eng 28:1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009

    Article  CAS  Google Scholar 

  29. Wu Y, Chen C, Jia Y et al (2018) Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl Energ 210:167–181. https://doi.org/10.1016/j.apenergy.2017.11.001

    Article  CAS  Google Scholar 

  30. Sarier N, Onder E (2012) Organic phase change materials and their textile applications: an overview. Thermochim Acta 540:7–60. https://doi.org/10.1016/j.tca.2012.04.013

    Article  CAS  Google Scholar 

  31. Purohit BK, Sistla VS (2021) Inorganic salt hydrate for thermal energy storage application: a review. Energy Storage. https://doi.org/10.1002/est2.212

    Article  Google Scholar 

  32. Xie N, Huang Z, Luo Z et al (2017) Inorganic salt hydrate for thermal energy storage. Appl Sci. https://doi.org/10.3390/app7121317

    Article  Google Scholar 

  33. Mohamed SA, Al-Sulaiman FA, Ibrahim NI et al (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089. https://doi.org/10.1016/j.rser.2016.12.012

    Article  CAS  Google Scholar 

  34. Kazemi Z, Mortazavi SM (2014) A new method of application of hydrated salts on textiles to achieve thermoregulating properties. Thermochim Acta 589:56–62. https://doi.org/10.1016/j.tca.2014.05.015

    Article  CAS  Google Scholar 

  35. Iqbal K, Sun D (2018) Synthesis of nanoencapsulated Glauber’s salt using PMMA shell and its application on cotton for thermoregulating effect. Cellulose 25:2103–2113. https://doi.org/10.1007/s10570-018-1692-8

    Article  CAS  Google Scholar 

  36. Bose P, Amirtham VA (2016) A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material. Renew Sustain Energy Rev 65:81–100. https://doi.org/10.1016/j.rser.2016.06.071

    Article  CAS  Google Scholar 

  37. Yuan Y, Zhang N, Tao W et al (2014) Fatty acids as phase change materials: a review. Renew Sustain Energy Rev 29:482–498. https://doi.org/10.1016/j.rser.2013.08.107

    Article  CAS  Google Scholar 

  38. Sundararajan S, Samui AB, Kulkarni PS (2017) Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A 5:18379–18396. https://doi.org/10.1039/c7ta04968d

    Article  CAS  Google Scholar 

  39. Che H, Chen Q, Zhong Q, He S (2018) The effects of nanoparticles on morphology and thermal properties of erythritol/polyvinyl alcohol phase change composite fibers. E-Polymers 18:321–329. https://doi.org/10.1515/epoly-2017-0176

    Article  CAS  Google Scholar 

  40. Wang H, Shi H, Qi M et al (2013) Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials. Thermochim Acta 564:34–38. https://doi.org/10.1016/j.tca.2013.04.025

    Article  CAS  Google Scholar 

  41. Zhang Z, Zhang X, Shi H et al (2016) Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core. Text Res J 86:493–501. https://doi.org/10.1177/0040517515592815

    Article  CAS  Google Scholar 

  42. Li S, Wang H, Mao H et al (2019) Light-to-thermal conversion and thermoregulated capability of coaxial fibers with a combined influence from comb-like polymeric phase change material and carbon nanotube. Acs Appl Mater Inter 11:14150–14158. https://doi.org/10.1021/acsami.9b02387

    Article  CAS  Google Scholar 

  43. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13:318–345. https://doi.org/10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  44. Kou Y, Wang S, Luo J et al (2018) Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications. J Chem Thermodyn 128:259–274. https://doi.org/10.1016/j.jct.2018.08.031

    Article  CAS  Google Scholar 

  45. Du X, Wang H, Cheng X, Du Z (2016) Synthesis and thermal energy storage properties of a solid–solid phase change material with a novel comb-polyurethane block copolymer structure. Rsc Adv 6:42643–42648. https://doi.org/10.1039/c6ra02559e

    Article  CAS  Google Scholar 

  46. Fallahi A, Guldentops G, Tao M et al (2017) Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Appl Therm Eng 127:1427–1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161

    Article  Google Scholar 

  47. Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005

    Article  CAS  Google Scholar 

  48. Keyan K, Ramachandran T, Shumugasundaram OL et al. (2012) Microencapsulation of PCMs in textiles: A review. J Textile Appar Technol Manag 7

  49. Reyez-Araiza JL, Pineda-Piñón J, López-Romero JM et al (2021) Thermal energy storage by the encapsulation of phase change materials in building elements—a review. Materials 14:1420. https://doi.org/10.3390/ma14061420

    Article  CAS  Google Scholar 

  50. Liu H, Wang X, Wu D (2019) Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energy Fuels 3:1091–1149. https://doi.org/10.1039/c9se00019d

    Article  CAS  Google Scholar 

  51. Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev 15:3813–3832. https://doi.org/10.1016/j.rser.2011.07.019

    Article  CAS  Google Scholar 

  52. Karaszewska A, Kamińska I, Nejman A et al (2019) Thermal-regulation of nonwoven fabrics by microcapsules of n-eicosane coated with a polysiloxane elastomer. Mater Chem Phys 226:204–213. https://doi.org/10.1016/j.matchemphys.2019.01.029

    Article  CAS  Google Scholar 

  53. Hassabo AG, Mohamed AL (2017) Enhancement the thermo-regulating property of cellulosic fabric using encapsulated paraffins in modified pectin. Carbohyd Polym 165:421–428. https://doi.org/10.1016/j.carbpol.2017.02.074

    Article  CAS  Google Scholar 

  54. Liu C, Xu Z, Song Y et al (2019) A novel shape-stabilization strategy for phase change thermal energy storage. J Mater Chem A 7:8194–8203. https://doi.org/10.1039/c9ta01496a

    Article  CAS  Google Scholar 

  55. Zhou J, Zhao J, Li H et al (2020) Enhanced thermal properties for nanoencapsulated phase change materials with functionalized graphene oxide (FGO) modified PMMA. Nanotechnology 31:295704. https://doi.org/10.1088/1361-6528/ab898b

    Article  CAS  Google Scholar 

  56. Alkan C, Aksoy SA, Anayurt RA (2015) Synthesis of poly(methyl methacrylate-co-acrylic acid)/n-eicosane microcapsules for thermal comfort in textiles. Text Res J 85:2051–2058. https://doi.org/10.1177/0040517514548751

    Article  CAS  Google Scholar 

  57. Karthikeyan M, Ramachandran T, Shanmugasundaram OL (2014) Synthesis, characterization, and development of thermally enhanced cotton fabric using nanoencapsulated phase change materials containing paraffin wax. J Text Inst 105:1279–1286. https://doi.org/10.1080/00405000.2014.886368

    Article  CAS  Google Scholar 

  58. Ma Y, Zong J, Li W et al (2015) Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell. Energy 87:86–94. https://doi.org/10.1016/j.energy.2015.04.096

    Article  CAS  Google Scholar 

  59. Jamekhorshid A, Sadrameli SM, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542. https://doi.org/10.1016/j.rser.2013.12.033

    Article  CAS  Google Scholar 

  60. Zhang S, Campagne C, Salaün F (2020) Preparation of n-Alkane/Polycaprolactone phase-change microcapsules via single nozzle electro-spraying: characterization on their formation. Struct Propert Appl Sci 10:561. https://doi.org/10.3390/app10020561

    Article  CAS  Google Scholar 

  61. Moghaddam MK, Mortazavi SM (2015) Preparation, characterisation and thermal properties of calcium alginate/n-nonadecane microcapsules fabricated by electro-coextrusion for thermo-regulating textiles. J Microencapsul 32:737–744. https://doi.org/10.3109/02652048.2015.1073388

    Article  CAS  Google Scholar 

  62. Shi J, Wu X, Sun R et al (2019) Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage. Mater Chem Phys 231:244–251. https://doi.org/10.1016/j.matchemphys.2019.04.032

    Article  CAS  Google Scholar 

  63. Alehosseini E, Jafari SM (2020) Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Adv Colloid Interfac. https://doi.org/10.1016/j.cis.2020.102226

    Article  Google Scholar 

  64. Zhao L, Luo J, Wang H et al (2016) Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles. Appl Therm Eng 99:495–501. https://doi.org/10.1016/j.applthermaleng.2015.12.111

    Article  CAS  Google Scholar 

  65. Luo J, Zhao L, Yang Y et al (2016) Emulsifying ability and cross-linking of silk fibroin microcapsules containing phase change materials. Sol Energ Mat Sol C 147:144–149. https://doi.org/10.1016/j.solmat.2015.12.012

    Article  CAS  Google Scholar 

  66. Saraç EG, Öner E, Kahraman MV (2019) Microencapsulated organic coconut oil as a natural phase change material for thermo-regulating cellulosic fabrics. Cellulose 26:8939–8950. https://doi.org/10.1007/s10570-019-02701-9

    Article  CAS  Google Scholar 

  67. Han X, Kong T, Zhu P, Wang L (2020) Microfluidic encapsulation of phase-change materials for high thermal performance. Langmuir 36:8165–8173. https://doi.org/10.1021/acs.langmuir.0c01171

    Article  CAS  Google Scholar 

  68. Carreira AS, Teixeira RFA, Beirão A et al (2017) Preparation of acrylic based microcapsules using different reaction conditions for thermo-regulating textiles production. Eur Polym J 93:33–43. https://doi.org/10.1016/j.eurpolymj.2017.05.027

    Article  CAS  Google Scholar 

  69. Alkan C, Günther E, Hiebler S et al (2012) Polyurethanes as solid–solid phase change materials for thermal energy storage. Sol Energy 86:1761–1769. https://doi.org/10.1016/j.solener.2012.03.012

    Article  CAS  Google Scholar 

  70. Mu S, Guo J, Yu C et al (2015) A novel solid-solid phase change material based on Poly(styrene-co-acrylonitrile) grafting with palmitic acid copolymers. J Macromol Sci Part 52:617–624. https://doi.org/10.1080/10601325.2015.1050633

    Article  CAS  Google Scholar 

  71. Cao Q, Liu P (2006) Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polym J 42:2931–2939. https://doi.org/10.1016/j.eurpolymj.2006.07.020

    Article  CAS  Google Scholar 

  72. Huang X, Chen X, Li A et al (2018) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661. https://doi.org/10.1016/j.cej.2018.09.013

    Article  CAS  Google Scholar 

  73. Shaid A, Wang L, Islam S et al (2016) Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Appl Therm Eng 107:602–611. https://doi.org/10.1016/j.applthermaleng.2016.06.187

    Article  CAS  Google Scholar 

  74. Khosrojerdi M, Mortazavi SM (2013) Impregnation of a porous material with a PCM on a cotton fabric and the effect of vacuum on thermo-regulating textiles. J Therm Anal Calorim 114:1111–1119. https://doi.org/10.1007/s10973-013-3144-x

    Article  CAS  Google Scholar 

  75. Yang K, Venkataraman M, Karpiskova J et al (2021) Structural analysis of embedding polyethylene glycol in silica aerogel. Micropor Mesopor Mat. https://doi.org/10.1016/j.micromeso.2020.110636

    Article  Google Scholar 

  76. Andriamitantsoa RS, Dong W, Gao H, Wang G (2017) PEG encapsulated by porous triamide-linked polymers as support for solid-liquid phase change materials for energy storage. Chem Phys Lett 671:165–173. https://doi.org/10.1016/j.cplett.2017.01.028

    Article  CAS  Google Scholar 

  77. Gao H, Wang J, Chen X et al (2018) Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review. Nano Energy 53:769–797. https://doi.org/10.1016/j.nanoen.2018.09.007

    Article  CAS  Google Scholar 

  78. Tian F, Zhang S, Zhai M et al (2017) Thermal properties of nano-sized polyethylene glycol confined in silica gels for latent heat storage. Thermochim Acta 655:211–218. https://doi.org/10.1016/j.tca.2017.05.006

    Article  CAS  Google Scholar 

  79. Wang C, Feng L, Li W et al (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials. Sol Energ Mat Sol C 105:21–26. https://doi.org/10.1016/j.solmat.2012.05.031

    Article  CAS  Google Scholar 

  80. Bayram Ü, Aksöz S, Maraşlı N (2014) Temperature dependency of thermal conductivity of solid phases for fatty acids. J Therm Anal Calorim 118:311–321. https://doi.org/10.1007/s10973-014-3968-z

    Article  CAS  Google Scholar 

  81. Kenisarin M, Mahkamov K, Kahwash F, Makhkamova I (2019) Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite. Sol Energ Mat Sol C 200:110026. https://doi.org/10.1016/j.solmat.2019.110026

    Article  CAS  Google Scholar 

  82. Zahir MH, Rahman MM, Irshad K, Rahman MM (2019) Shape-stabilized phase change materials for solar energy storage: MgO and Mg(OH)2 mixed with polyethylene glycol. Nanomaterials-basel 9:1773. https://doi.org/10.3390/nano9121773

    Article  CAS  Google Scholar 

  83. Kibria MA, Anisur MR, Mahfuz MH et al (2015) A review on thermophysical properties of nanoparticle dispersed phase change materials. Energ Convers Manage 95:69–89. https://doi.org/10.1016/j.enconman.2015.02.028

    Article  CAS  Google Scholar 

  84. Fan L, Khodadadi JM (2011) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15:24–46. https://doi.org/10.1016/j.rser.2010.08.007

    Article  CAS  Google Scholar 

  85. Li T, Lee J-H, Wang R, Kang YT (2014) Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application. Int J Heat Mass Tran 75:1–11. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.054

    Article  CAS  Google Scholar 

  86. Ma C, Zhang Y, Chen X et al (2020) Experimental study of an enhanced phase change material of paraffin/expanded graphite/nano-metal particles for a personal cooling system. Materials 13:980. https://doi.org/10.3390/ma13040980

    Article  CAS  Google Scholar 

  87. Sarier N, Onder E, Ukuser G (2015) Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochim Acta 613:17–27. https://doi.org/10.1016/j.tca.2015.05.015

    Article  CAS  Google Scholar 

  88. Li J, Zhu X, Wang H et al (2021) Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles. J Mater Sci 56:2176–2191. https://doi.org/10.1007/s10853-020-05399-4

    Article  CAS  Google Scholar 

  89. Golestaneh SI, Karimi G, Babapoor A, Torabi F (2018) Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles. Appl Energ 212:552–564. https://doi.org/10.1016/j.apenergy.2017.12.055

    Article  CAS  Google Scholar 

  90. Sundarram SS, Li W (2014) The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Appl Therm Eng 64:147–154. https://doi.org/10.1016/j.applthermaleng.2013.11.072

    Article  Google Scholar 

  91. Sheng N, Rao Z, Zhu C, Habazaki H (2020) Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds. Sol Energ Mat Sol C. https://doi.org/10.1016/j.solmat.2019.110241

    Article  Google Scholar 

  92. Li C, Zhang D, Ren W (2021) Phase change materials composite based on hybrid aerogel with anisotropic microstructure. Materials 14:777. https://doi.org/10.3390/ma14040777

    Article  CAS  Google Scholar 

  93. Huang M, Luo Y, Zhong Y et al (2017) Preparation and characterization of microencapsulated phase change materials with binary cores and poly (allyl methacrylate) (PALMA) shells used for thermo-regulated fibers. Thermochim Acta 655:262–268. https://doi.org/10.1016/j.tca.2017.07.006

    Article  CAS  Google Scholar 

  94. Zhou M, Luo Y, Du J (2020) Temperature-regulated seaweed fibers based on MPCMs using binary system of Butyl Stearate/Hexadecanol. Fiber Polym 21:1956–1964. https://doi.org/10.1007/s12221-020-9960-2

    Article  CAS  Google Scholar 

  95. Atinafu DG, Dong W, Huang X et al (2018) Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity. Appl Energ 211:1203–1215. https://doi.org/10.1016/j.apenergy.2017.12.025

    Article  CAS  Google Scholar 

  96. Cai Y, Liu M, Song X et al (2015) A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval. Rsc Adv 5:84245–84251. https://doi.org/10.1039/c5ra14876f

    Article  CAS  Google Scholar 

  97. Cai Y, Ke H, Lin L et al (2012) Preparation, morphology and thermal properties of electrospun fatty acid eutectics/polyethylene terephthalate form-stable phase change ultrafine composite fibers for thermal energy storage. Energ Convers Manage 64:245–255. https://doi.org/10.1016/j.enconman.2012.04.018

    Article  CAS  Google Scholar 

  98. DongJiang Liu TWY et al (2020) A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2020.112945

    Article  Google Scholar 

  99. Nikmaram N, Roohinejad S, Hashemi S et al (2017) Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. Rsc Adv 7:28951–28964. https://doi.org/10.1039/c7ra00179g

    Article  CAS  Google Scholar 

  100. Hu W, Yu X (2012) Encapsulation of bio-based PCM with coaxial electrospun ultrafine fibers. Rsc Adv 2:5580–5584. https://doi.org/10.1039/c2ra20532g

    Article  CAS  Google Scholar 

  101. Cai Y, Ke H, Zhang T et al (2011) Preparation, morphology and properties of electrospun lauric acid/pet form-stable phase change ultrafine composite fibres. Polym Polym Compos 19:773–780. https://doi.org/10.1177/096739111101900907

    Article  CAS  Google Scholar 

  102. Kizildag N (2021) Smart composite nanofiber mats with thermal management functionality. Sci Rep-uk 11:4256. https://doi.org/10.1038/s41598-021-83799-5

    Article  CAS  Google Scholar 

  103. Lin C, Li W, Yan Y et al (2021) Ultrafine electrospun fiber based on ionic liquid/AlN/copolyamide composite as novel form-stable phase change material for thermal energy storage. Sol Energ Mat Sol C. https://doi.org/10.1016/j.solmat.2020.110953

    Article  Google Scholar 

  104. Chen C, Liu S, Liu W et al (2012) Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energ Mat Sol C 96:202–209. https://doi.org/10.1016/j.solmat.2011.09.057

    Article  CAS  Google Scholar 

  105. Xie N, Niu J, Gao X et al (2020) Fabrication and characterization of electrospun fatty acid form-stable phase change materials in the presence of copper nanoparticles. Int J Energ Res 44:8567–8577. https://doi.org/10.1002/er.5543

    Article  CAS  Google Scholar 

  106. Zhang J, Yang Q, Cai Y et al (2017) Fabrication and characterization of electrospun porous cellulose acetate nanofibrous mats incorporated with capric acid as form-stable phase change materials for storing/retrieving thermal energy. Int J Green Energy 14:1011–1019. https://doi.org/10.1080/15435075.2017.1354298

    Article  CAS  Google Scholar 

  107. Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energ 88:3133–3139. https://doi.org/10.1016/j.apenergy.2011.02.026

    Article  CAS  Google Scholar 

  108. Nguyen TTT, Park JS (2011) Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials. J Appl Polym Sci 121:3596–3603. https://doi.org/10.1002/app.34148

    Article  CAS  Google Scholar 

  109. Ke H (2018) Electrospun methyl stearate/PET form-stable phase change composite nanofibres for storage and retrieval of thermal energy. Mater Res Innov 22:150–158. https://doi.org/10.1080/14328917.2016.1266203

    Article  CAS  Google Scholar 

  110. Cai Y, Xu X, Gao C et al (2012) Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of lauric acid and polyamide 6 as thermal energy storage materials. Fiber Polym 13:837–845. https://doi.org/10.1007/s12221-012-0837-x

    Article  CAS  Google Scholar 

  111. Cai Y, Ke H, Dong J et al (2011) Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials. Appl Energ 88:2106–2112. https://doi.org/10.1016/j.apenergy.2010.12.071

    Article  CAS  Google Scholar 

  112. Alay S, Göde F, Alkan C (2010) Preparation and characterization of poly(methylmethacrylate-coglycidyl methacrylate)/n-hexadecane nanocapsules as a fiber additive for thermal energy storage. Fiber Polym 11:1089–1093. https://doi.org/10.1007/s12221-010-1089-2

    Article  CAS  Google Scholar 

  113. Rezaei B, Ghani M, Askari M et al (2016) Fabrication of thermal intelligent core/shell nanofibers by the solution coaxial electrospinning process. Adv Polym Tech. https://doi.org/10.1002/adv.21534

    Article  Google Scholar 

  114. Dang TT, Nguyen TTT, Chung OH, Park JS (2015) Fabrication of form-stable poly(ethylene glycol)-loaded poly(vinylidene fluoride) nanofibers via single and coaxial electrospinning. Macromol Res 23:819–829. https://doi.org/10.1007/s13233-015-3109-y

    Article  CAS  Google Scholar 

  115. Hu W, Yu X (2014) Thermal and mechanical properties of bio-based PCMs encapsulated with nanofibrous structure. Renew Energ 62:454–458. https://doi.org/10.1016/j.renene.2013.07.047

    Article  CAS  Google Scholar 

  116. Babapoor A, Karimi G, Golestaneh SI, Mezjin MA (2017) Coaxial electro-spun PEG/PA6 composite fibers: fabrication and characterization. Appl Therm Eng 118:398–407. https://doi.org/10.1016/j.applthermaleng.2017.02.119

    Article  CAS  Google Scholar 

  117. Feng W, Zhang Y-S, Shao Y-W et al (2021) Coaxial electrospun membranes with thermal energy storage and shape memory functions for simultaneous thermal/moisture management in personal cooling textiles. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.110245

    Article  Google Scholar 

  118. Noyan ECB, Onder E, Sarier N, Arat R (2018) Development of heat storing poly(acrylonitrile) nanofibers by coaxial electrospinning. Thermochim Acta 662:135–148. https://doi.org/10.1016/j.tca.2018.02.008

    Article  CAS  Google Scholar 

  119. Chen C, Zhao Y, Liu W (2013) Electrospun polyethylene glycol/cellulose acetate phase change fibers with core-sheath structure for thermal energy storage. Renew Energ 60:222–225. https://doi.org/10.1016/j.renene.2013.05.020

    Article  CAS  Google Scholar 

  120. Ruirui C, Dongfang P, Shuqin L et al (2019) Electrospinning of thermo-regulated sheath/core submicrometer fiber with galactitol hexa palmitate as a core. Text Res J 89:354–363. https://doi.org/10.1177/0040517517743740

    Article  CAS  Google Scholar 

  121. Wang S, Yi L, Fang Y et al (2021) Reversibly thermochromic and high strength core-shell nanofibers fabricated by melt coaxial electrospinning. J Appl Polym Sci. https://doi.org/10.1002/app.50465

    Article  Google Scholar 

  122. Haghighat F, Ravandi SAH, Esfahany MN, Valipouri A (2018) A comprehensive study on optimizing and thermoregulating properties of core–shell fibrous structures through coaxial electrospinning. J Mater Sci 53:4665–4682. https://doi.org/10.1007/s10853-017-1856-1

    Article  CAS  Google Scholar 

  123. Sarier N, Arat R, Menceloglu Y et al (2016) Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials. Thermochim Acta 643:83–93. https://doi.org/10.1016/j.tca.2016.10.002

    Article  CAS  Google Scholar 

  124. Wang N, Chen H, Lin L et al (2010) Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromol Rapid Comm 31:1622–1627. https://doi.org/10.1002/marc.201000185

    Article  CAS  Google Scholar 

  125. Zdraveva E, Fang J, Mijovic B, Lin T (2015) Electrospun Poly(vinyl alcohol)/Phase change material fibers: morphology, heat properties, and stability. Ind Eng Chem Res 54:8706–8712. https://doi.org/10.1021/acs.iecr.5b01822

    Article  CAS  Google Scholar 

  126. Zhao L, Luo J, Li Y et al (2017) Emulsion-electrospinning n-octadecane/silk composite fiber as environmental-friendly form-stable phase change materials. J Appl Polym Sci. https://doi.org/10.1002/app.45538

    Article  Google Scholar 

  127. Chen W, Ni S, Weng W, Fu M (2018) The preparation and characterization of ultrafine fatty acid Ester/Poly(meta-phenylene isophthalamide) phase change fibers designed for thermo-regulating protective clothing. Fiber Polym 19:498–506. https://doi.org/10.1007/s12221-018-7180-9

    Article  CAS  Google Scholar 

  128. Zhou L, Shi F, Liu G et al (2021) Fabrication and characterization of in situ cross-linked electrospun Poly(vinyl alcohol)/phase change material nanofibers. Sol Energy 213:339–349. https://doi.org/10.1016/j.solener.2020.11.039

    Article  CAS  Google Scholar 

  129. Golestaneh SI, Mosallanejad A, Karimi G et al (2016) Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method. Appl Energ 182:409–417. https://doi.org/10.1016/j.apenergy.2016.08.136

    Article  CAS  Google Scholar 

  130. Venkataraman M, Yang K, Xiong X et al (2020) Preparation of electrosprayed, microporous particle filled layers. Polymers-basel. https://doi.org/10.3390/polym12061352

    Article  Google Scholar 

  131. Peng Q, Yang K, Venkataraman M et al (2021) Preparation of electrosprayed composite coated microporous filter for particulate matter capture. Nano Sel. https://doi.org/10.1002/nano.202100186

    Article  Google Scholar 

  132. Xiong X, Venkataraman M, Yang T et al (2020) Transport properties of electro-sprayed polytetrafluoroethylene fibrous layer filled with aerogels/phase change materials. Nanomaterials-basel 10:1–14. https://doi.org/10.3390/nano10102042

    Article  CAS  Google Scholar 

  133. Li C, Huang Y, Li R et al (2021) Fabrication and properties of carboxymethyl chitosan/polyethylene oxide composite nonwoven mats by centrifugal spinning. Carbohyd Polym 251:117037. https://doi.org/10.1016/j.carbpol.2020.117037

    Article  CAS  Google Scholar 

  134. Gong X, Dang G, Guo J et al (2019) Sodium alginate/feather keratin-g-allyloxy polyethylene glycol composite phase change fiber. Int J Biol Macromol 131:192–200. https://doi.org/10.1016/j.ijbiomac.2019.02.168

    Article  CAS  Google Scholar 

  135. Zhang X, Qiao J, Zhao H et al (2018) Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning. Chem Phys Lett 691:314–318. https://doi.org/10.1016/j.cplett.2017.11.041

    Article  CAS  Google Scholar 

  136. Chen G, Xu Y, Shi T et al (2019) Preparation and properties of polyacrylonitrile/polyethylene glycol composite fibers phase change materials by centrifugal spinning. Mater Res Express. https://doi.org/10.1088/2053-1591/ab2d0a

    Article  Google Scholar 

  137. Chen G, Shi T, Zhang X et al (2020) Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning. Polymer. https://doi.org/10.1016/j.polymer.2019.122012

    Article  Google Scholar 

  138. Anna N, Inge G, Bengt H (2011) Multi-component fibres

  139. Tomaszewski W, Twarowska-Schmidt K, Moraczewski A et al (2012) Nonwovens with thermal storage properties based on paraffin-modified polypropylene fibres. Fibres and Textiles in Eastern Europe 96:64–69

    Google Scholar 

  140. Iqbal K, Sun D (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energ 71:473–479. https://doi.org/10.1016/j.renene.2014.05.063

    Article  CAS  Google Scholar 

  141. Iqbal K, Sun D, Stylios GK et al (2015) FE analysis of thermal properties of woven fabric constructed by yarn incorporated with microencapsulated phase change materials. Fiber Polym 16:2497–2503. https://doi.org/10.1007/s12221-015-5607-0

    Article  CAS  Google Scholar 

  142. Fredi G, Bruenig H, Vogel R, Scheffler C (2019) Melt-spun polypropylene filaments containing paraffin microcapsules for multifunctional hybrid yarns and smart thermoregulating thermoplastic composites. Express Polym Lett 13:1071–1087. https://doi.org/10.3144/expresspolymlett.2019.93

    Article  CAS  Google Scholar 

  143. Xia W, Xiang H, Zhou Z et al (2021) Hybridizing rational designed hydrophobic PEG-based derivatives into nanoporous F-SiO2 as form-stable phase change materials for melt-spun PA6 phase change fibers with a superior washing durability. Compos Commun. https://doi.org/10.1016/j.coco.2021.100633

    Article  Google Scholar 

  144. Xia W, Fei X, Wang Q et al (2021) Nano-hybridized form-stable ester@F-SiO2 phase change materials for melt-spun PA6 fibers engineered towards smart thermal management fabrics. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126369

    Article  Google Scholar 

  145. Xu W, Lu Y, Wang B et al (2013) Preparation and characterization of high latent heat thermal regulating fiber made of PVA and paraffin. J Eng Fiber Fabr 8:44–49. https://doi.org/10.1177/155892501300800205

    Article  CAS  Google Scholar 

  146. Li Z, He W, Xu J, Jiang M (2015) Preparation and characterization of in situ grafted/crosslinked polyethylene glycol/polyvinyl alcohol composite thermal regulating fiber. Sol Energ Mat Sol C 140:193–201. https://doi.org/10.1016/j.solmat.2015.04.014

    Article  CAS  Google Scholar 

  147. Wang Y, Yao J, Zhu G et al (2020) A novel method for producing bi-component thermo-regulating alginate fiber from phase change material microemulsion. Text Res J 90:1038–1044. https://doi.org/10.1177/0040517519886075

    Article  CAS  Google Scholar 

  148. Wu J, Hu R, Zeng S et al (2020) Flexible and Robust Biomaterial Microstructured Colored Textiles for Personal Thermoregulation. Acs Appl Mater Inter 12:19015–19022. https://doi.org/10.1021/acsami.0c02300

    Article  CAS  Google Scholar 

  149. Wen G-Q, Xie R, Liang W-G et al (2015) Microfluidic fabrication and thermal characteristics of core–shell phase change microfibers with high paraffin content. Appl Therm Eng 87:471–480. https://doi.org/10.1016/j.applthermaleng.2015.05.036

    Article  CAS  Google Scholar 

  150. Pesek SC, Koros WJ (1994) Aqueous quenched asymmetric polysulfone hollow fibers prepared by dry/wet phase separation. J Membrane Sci 88:1–19. https://doi.org/10.1016/0376-7388(93)e0150-i

    Article  CAS  Google Scholar 

  151. Gan YX, Gan JB (2020) Porous Fiber Processing and Manufacturing for Energy Storage Applications. Chemengineering 4:59. https://doi.org/10.3390/chemengineering4040059

    Article  CAS  Google Scholar 

  152. Ahn Y-H, DeWitt SJA, McGuire S, Lively RP (2021) Incorporation of phase change materials into fibers for sustainable thermal energy storage. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c06140

    Article  Google Scholar 

  153. Yan Y, Li W, Zhu R et al (2021) Flexible phase change material fiber: A simple route to thermal energy control textiles. Materials 14:1–18. https://doi.org/10.3390/ma14020401

    Article  CAS  Google Scholar 

  154. Luo D, Wei F, Shao H et al (2018) Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials. J Mater Sci 53:15500–15513. https://doi.org/10.1007/s10853-018-2722-5

    Article  CAS  Google Scholar 

  155. Li G, Hong G, Dong D et al (2018) Multiresponsive graphene-aerogel-directed phase-change smart Fibers. Adv Mater. https://doi.org/10.1002/adma.201801754

    Article  Google Scholar 

  156. Wan ACA, Cutiongco MFA, Tai BCU et al (2016) Fibers by interfacial polyelectrolyte complexation – processes, materials and applications. Mater Today 19:437–450. https://doi.org/10.1016/j.mattod.2016.01.017

    Article  CAS  Google Scholar 

  157. Fang H, Lin J, Zhang L et al (2020) Fibrous form-stable phase change materials with high thermal conductivity fabricated by interfacial polyelectrolyte complex spinning. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2020.116836

    Article  Google Scholar 

  158. Lin J-H, Huang Y-T, Li T-T et al (2016) Bamboo charcoal/phase change material/stainless steel ring-spun complex yarn and its far-infrared/anion-releasing elastic warp-knitted fabric: Fabrication and functional evaluation. J Ind Text 46:624–642. https://doi.org/10.1177/1528083715595007

    Article  CAS  Google Scholar 

  159. Iqbal K, Sun D (2015) Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials. Fiber Polym 16:1156–1162. https://doi.org/10.1007/s12221-015-1156-9

    Article  CAS  Google Scholar 

  160. Rahbar RS, Maleki H, Kalantari B (2016) Fabrication of electrospun nanofibre yarn based on nylon 6/microencapsulated phase change materials. J Exp Nanosci 11:1402–1415. https://doi.org/10.1080/17458080.2016.1233582

    Article  CAS  Google Scholar 

  161. Ke G, Jin X, Cai G et al (2021) A novel composite cotton yarn with phase change and electrical conductivity functions. J Ind Text. https://doi.org/10.1177/15280837211003166

    Article  Google Scholar 

  162. Chen W, Fu M, Weng W (2020) Electrospinning of continuous nanofiber hollow yarns for thermal storage and insulation by a multi-step twisting method. Text Res J 90:1045–1056. https://doi.org/10.1177/0040517519886023

    Article  CAS  Google Scholar 

  163. Huang C-L, Huang Y-T, Li T-T et al (2016) Composite processing and property evaluation of far-infrared/electromagnetic shielding bamboo charcoal/phase change material/stainless steel elastic composite fabrics. J Polym Eng 36:211–220. https://doi.org/10.1515/polyeng-2015-0080

    Article  CAS  Google Scholar 

  164. Liu X, Lou Y (2015) Preparation of microencapsulated phase change materials by the sol-gel process and its application on textiles [Przygotowanie materiałów zmiennofazowych w mikrokapsułkach za pomocą procesu zol-żel i ich zastosowanie w tekstyliach]. Fibres and Textiles in Eastern Europe 23:63–67

    CAS  Google Scholar 

  165. Zhang G, Cai C, Wang Y et al (2019) Preparation and evaluation of thermo-regulating bamboo fabric treated by microencapsulated phase change materials. Text Res J 89:3387–3393. https://doi.org/10.1177/0040517518813681

    Article  CAS  Google Scholar 

  166. Varnaitė-Žuravliova S, Stygienė L, Krauledas S et al (2015) The dependance of effectiveness of incorporated microencapsulated phase change materials on different structures of knitted fabrics. Fiber Polym 16:1125–1133. https://doi.org/10.1007/s12221-015-1125-3

    Article  CAS  Google Scholar 

  167. Aksoy SA, Alkan C, Tözüm MS et al (2017) Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules. J Text Inst 108:30–41. https://doi.org/10.1080/00405000.2015.1133128

    Article  CAS  Google Scholar 

  168. Wang Y, Ma Y, Chen R, Su Y (2021) Thermal protective performance of firefighting protective clothing incorporated with phase change material in fire environments. Fire Mater 45:250–260. https://doi.org/10.1002/fam.2928

    Article  CAS  Google Scholar 

  169. Su Y, Zhu W, Tian M et al (2020) Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2020.115340

    Article  Google Scholar 

  170. Kar TR, Samanta AK, Sinnur HD, Kumar M (2021) Studies on Effect of Application of Capric Acid and Stearic Acid based Reactive Phase Change Materials (rPCM) with PHAMS Binder on Thermal Comfort of Cotton Khadi Fabric as Thermo-tropic Smart Textiles. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1880517

    Article  Google Scholar 

  171. Zhang W, Hao S, Zhao D et al (2020) Preparation of PMMA/SiO2 PCM microcapsules and its thermal regulation performance on denim fabric. Pigm Resin Technol 49:491–499. https://doi.org/10.1108/prt-01-2020-0003

    Article  CAS  Google Scholar 

  172. Iamphaojeen Y, Siriphannon P (2018) Adjustable thermal barrier of cotton fabric by multilayer immobilization of PCM nanocapsules. Cellulose 25:3649–3661. https://doi.org/10.1007/s10570-018-1804-5

    Article  CAS  Google Scholar 

  173. Karthikeyan M, Ramachandran T, Sundaram OLS (2014) Nanoencapsulated phase change materials based on polyethylene glycol for creating thermoregulating cotton. J Ind Text 44:130–146. https://doi.org/10.1177/1528083713480378

    Article  CAS  Google Scholar 

  174. Salaün F, Devaux E, Bourbigot S, Rumeau P (2010) Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim Acta 506:82–93. https://doi.org/10.1016/j.tca.2010.04.020

    Article  CAS  Google Scholar 

  175. Sánchez-Silva L, Rodríguez JF, Romero A, Sánchez P (2012) Preparation of coated thermo-regulating textiles using Rubitherm-RT31 microcapsules. J Appl Polym Sci 124:4809–4818. https://doi.org/10.1002/app.35546

    Article  CAS  Google Scholar 

  176. Kim I, Lee K, Cho G (2016) Heat storage/release characteristics and mechanical properties of combat uniform fabrics treated with microcapsules containing octadecane as phase change materials. Fiber Polym 17:1726–1734. https://doi.org/10.1007/s12221-016-6796-x

    Article  CAS  Google Scholar 

  177. Kim I, Lee K, Cho G (2016) Response surface methodology for optimizing treatment condition of military combat uniform fabrics with phase change microcapsules to minimize fabric frictional sound and maximize the heat property. Fiber Polym 17:1305–1310. https://doi.org/10.1007/s12221-016-6383-1

    Article  CAS  Google Scholar 

  178. Park YM, Shin JW (2011) Surface properties studies of MPCMs containing fabrics for thermo-regulating textiles. Fiber Polym 12:384–389. https://doi.org/10.1007/s12221-011-0384-x

    Article  CAS  Google Scholar 

  179. Peter G, Hans R, Oliver S (2009) Elastic, soft and punctiformly bound non-woven fabric provided with filler particles and method for production and the use thereof

  180. Christophter A, Blackford ME (2015) Cooling fabrics

  181. Ghahremanzadeh F, Khoddami A, Carr CM (2010) Improvement in fastness properties of phase-change material applied on surface modified wool fabrics. Fiber Polym 11:1170–1180. https://doi.org/10.1007/s12221-010-1170-x

    Article  CAS  Google Scholar 

  182. Benmoussa D, Molnar K, Hannache H, Cherkaoui O (2018) Novel Thermo-Regulating Comfort Textile Based on Poly(allyl ethylene diamine)/n-Hexadecane Microcapsules Grafted onto Cotton Fabric. Adv Polym Tech 37:419–428. https://doi.org/10.1002/adv.21682

    Article  CAS  Google Scholar 

  183. Hassabo AG (2014) New approaches to improving thermal regulating property of cellulosic fabric. Carbohyd Polym 101:912–919. https://doi.org/10.1016/j.carbpol.2013.10.006

    Article  CAS  Google Scholar 

  184. Paul R (2014) Functional Finishes for Textiles Improving Comfort. Woodhead Publishing, Performance and Protection

    Google Scholar 

  185. Yoo S, Kandare E, Shanks R et al (2016) Thermophysical properties of multifunctional glass fibre reinforced polymer composites incorporating phase change materials. Thermochim Acta 642:25–31. https://doi.org/10.1016/j.tca.2016.09.003

    Article  CAS  Google Scholar 

  186. Nejman A, Cieślak M, Gajdzicki B et al (2014) Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim Acta 589:158–163. https://doi.org/10.1016/j.tca.2014.05.037

    Article  CAS  Google Scholar 

  187. Eugene AJ (2019) Cooling Fabric

  188. Zhao M (2017) The usage of phase change materials in fire fighter protective clothing: its effect on thermal protection. Iop Conf Ser Mater Sci Eng 274:012136. https://doi.org/10.1088/1757-899x/274/1/012136

    Article  Google Scholar 

  189. Alptekin E, Ezan MA, Gül BM et al (2017) Numerical investigation of thermal regulation inside firefighter protective clothing. Tekstil Ve Mühendis 24:94–100. https://doi.org/10.7216/1300759920172410606

    Article  Google Scholar 

  190. Zhu F, Feng QQ, Liu R et al (2015) Enhancing the thermal protective performance of firefighters’ protective fabrics by incorporating phase change materials [Polepszenie właściwości termicznych odzieży ochronnej strażaków poprzez zastosowanie materiałów zmiennofazowych]. Fibres and Textiles in Eastern Europe 23:68–73

    Article  Google Scholar 

  191. Shaid A, Wang L, Fergusson SM, Padhye R (2018) Effect of Aerogel Incorporation in PCM-Containing Thermal Liner of Firefighting Garment. Cloth Text Res J 36:151–164. https://doi.org/10.1177/0887302x18755464

    Article  Google Scholar 

  192. Zhang H, Song G, Su H et al (2017) An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials. Fire Mater 41:953–963. https://doi.org/10.1002/fam.2435

    Article  CAS  Google Scholar 

  193. Michael F (2019) Sleep products having adjustable firmness levels and adjustable heights

  194. Kevin C, Mackenzie P, Sheri M, Brian A (2019) Three dimensional polymeric fiber matrix layer for bedding products

  195. Yoo H, Lim J, Kim E (2013) Effects of the number and position of phase-change material-treated fabrics on the thermo-regulating properties of phase-change material garments. Text Res J 83:671–682. https://doi.org/10.1177/0040517512461700

    Article  CAS  Google Scholar 

  196. Demirbağ S, Aksoy SA (2016) Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics. Fiber Polym 17:408–417. https://doi.org/10.1007/s12221-016-5113-z

    Article  CAS  Google Scholar 

  197. Borreguero AM, Talavera B, Rodriguez JF et al (2013) Enhancing the thermal comfort of fabrics for the footwear industry. Text Res J 83:1754–1763. https://doi.org/10.1177/0040517513481872

    Article  CAS  Google Scholar 

  198. Zhang Q, He Z, Fang X et al (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45. https://doi.org/10.1016/j.ensm.2016.09.006

    Article  Google Scholar 

  199. Halimi MT, Hassen MB, Sakli F (2012) Design of a novel comfort liner for a motorcycle helmet. Int J Sustain Eng 5:128–134. https://doi.org/10.1080/19397038.2011.602438

    Article  Google Scholar 

  200. Sinnappoo K, Nayak R, Thompson L, Padhye R (2020) Application of sustainable phase change materials in motorcycle helmet for heat-stress reduction. J Text Inst. https://doi.org/10.1080/00405000.2020.1715606

    Article  Google Scholar 

  201. Itani M, Ghaddar N, Ghali K (2017) Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment. Energ Convers Manage 140:218–227. https://doi.org/10.1016/j.enconman.2017.03.011

    Article  Google Scholar 

  202. Kadem FD, Saraç EG (2017) An experimental application on denim garment to give thermal regulation property. J Text Inst 108:353–360. https://doi.org/10.1080/00405000.2016.1166822

    Article  CAS  Google Scholar 

  203. Scacchetti FAP, Pinto E, Soares GMB (2017) Functionalization and characterization of cotton with phase change materials and thyme oil encapsulated in beta-cyclodextrins. Prog Org Coat 107:64–74. https://doi.org/10.1016/j.porgcoat.2017.03.015

    Article  CAS  Google Scholar 

  204. Scacchetti FAP, Pinto E, Soares GMB (2018) Thermal and antimicrobial evaluation of cotton functionalized with a chitosan–zeolite composite and microcapsules of phase-change materials. J Appl Polym Sci. https://doi.org/10.1002/app.46135

    Article  Google Scholar 

  205. Yi S, Sun S, Deng Y, Feng S (2015) Preparation of composite thermochromic and phase-change materials by the sol–gel method and its application in textiles. J Text Inst 106:1071–1077. https://doi.org/10.1080/00405000.2014.965501

    Article  CAS  Google Scholar 

  206. Wang H, Luo J, Yang Y et al (2016) Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol Energy 139:591–598. https://doi.org/10.1016/j.solener.2016.10.011

    Article  CAS  Google Scholar 

  207. Xy G, Y G, N W, et al (2021) Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs. Chem Eng J 408:127276. https://doi.org/10.1016/j.cej.2020.127276

    Article  CAS  Google Scholar 

  208. Ward JW, Thomas R, Mitchell M, Segal BM (2010) Method and system of using nanotube fabrics as joule heating elements for memories and other applications

  209. Brooks L, Lettow J, Scheffer D (2018) Personal thermal management system

  210. Shi Q, Liu Z, Jin X et al (2015) Electrospun fibers based on polyvinyl pyrrolidone/Eu-polyethylene glycol as phase change luminescence materials. Mater Lett 147:113–115. https://doi.org/10.1016/j.matlet.2015.02.040

    Article  CAS  Google Scholar 

  211. Xi P, Zhao T, Xia L et al (2017) Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties. Sci Rep-uk. https://doi.org/10.1038/srep40390

    Article  Google Scholar 

  212. Chai L, Wang X, Wu D (2015) Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl Energ 138:661–674. https://doi.org/10.1016/j.apenergy.2014.11.006

    Article  CAS  Google Scholar 

  213. Verma P, Varun SSK (2008) Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material. Renew Sustain Energy Rev 12:999–1031. https://doi.org/10.1016/j.rser.2006.11.002

    Article  CAS  Google Scholar 

  214. Zhang C, Chang S, Song G et al (2021) Study on a novel filter media incorporating with core shell nanoencapsulated phase change material: fabrication and evaluation. Process 9:731. https://doi.org/10.3390/pr9050731

    Article  CAS  Google Scholar 

  215. L VHK, W VHE, Diana VH (2008) Therapeutic pack

  216. Aldo L (2020) Thermally assisted therapeutic aids for cosmetics and wound treatment

  217. Brideges S, Shuman SR, Asplund P (2016) Image transfer product including a phase change materials

  218. Nejman A, Gromadzínska E, Kamínska I, Ciéslak M (2020) Assessment of thermal performance of textile materials modified with PCM microcapsules using combination of DSC and infrared thermography methods. Molecules. https://doi.org/10.3390/molecules25010122

    Article  Google Scholar 

  219. Nejman A, Cieślak M (2017) The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl Therm Eng 127:212–223. https://doi.org/10.1016/j.applthermaleng.2017.08.037

    Article  CAS  Google Scholar 

  220. Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. Wiley

    Google Scholar 

  221. Pause B (1995) Development of heat and cold insulating membrane structures with phase change material. J Ind Text 25:59–68. https://doi.org/10.1177/152808379502500107

    Article  CAS  Google Scholar 

  222. Bendkowska W, Tysiak J, Grabowski L, Blejzyk A (2005) Determining temperature regulating factor for apparel fabrics containing phase change material. Int J Cloth Sci Tech 17:209–214. https://doi.org/10.1108/09556220510590902

    Article  Google Scholar 

  223. Ying B, Kwok Y, Li Y et al (2004) Assessing the performance of textiles incorporating phase change materials. Polym Test 23:541–549. https://doi.org/10.1016/j.polymertesting.2003.11.002

    Article  CAS  Google Scholar 

  224. Wang SX, Li Y, Hu JY et al (2006) Effect of phase-change material on energy consumption of intelligent thermal-protective clothing. Polym Test 25:580–587. https://doi.org/10.1016/j.polymertesting.2006.01.018

    Article  CAS  Google Scholar 

  225. Wan X, Fan J (2009) A new method for measuring the thermal regulatory properties of phase change material (PCM) fabrics. Meas Sci Technol 20:025110. https://doi.org/10.1088/0957-0233/20/2/025110

    Article  CAS  Google Scholar 

  226. Scacchetti FAP, Soares GMB (2019) Chemical characterization and thermal comfort properties of cotton finished with phase change materials and antimicrobial agents. Cell Chem Technol 53:363–371. https://doi.org/10.35812/cellulosechemtechnol.2019.53.37

  227. Hes L, Lu BL (2004) Using a thermal simulator to determine the amount of time that humans are thermally protected by fabrics containing phase change materials. Res J Text Appar 8:51–56. https://doi.org/10.1108/rjta-08-02-2004-b007

    Article  Google Scholar 

  228. Yang K, Jiao M, Wang S et al (2018) Thermoregulation properties of composite phase change materials in high temperature environmental conditions. Int J Cloth Sci Tech 30:507–516. https://doi.org/10.1108/ijcst-11-2017-0173

    Article  Google Scholar 

  229. Shaid A, Wang L, Padhye R (2016) The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment. J Ind Text 45:611–625. https://doi.org/10.1177/1528083715610296

    Article  CAS  Google Scholar 

  230. Yang K, Venkataraman M, Wang YF et al (2020) Thermal performance of a multi-layer composite containing peg/laponite as pcms. J Fiber Bioeng Informatics 13:61–68. https://doi.org/10.3993/jfbim00330

    Article  Google Scholar 

  231. Haghighat F, Ravandi SAH, Esfahany MN et al (2019) Thermal performance of electrospun core-shell phase change fibrous layers at simulated body conditions. Appl Therm Eng 161:113924. https://doi.org/10.1016/j.applthermaleng.2019.113924

    Article  Google Scholar 

  232. Michalak M, Felczak M, Wiecek B (2008) A new method of evaluation of thermal parameters of textile material. Proc 2008 Int Conf Quantitative Infrared Thermography. https://doi.org/10.21611/qirt.2008.11_04_05

  233. Ghali K, Ghaddar N, Harathani J, Jones B (2004) Experimental and numerical investigation of the effect of phase change materials on clothing during periodic ventilation. Text Res J 74:205–214. https://doi.org/10.1177/004051750407400304

    Article  CAS  Google Scholar 

  234. Jaworski M (2019) Mathematical model of heat transfer in PCM incorporated fabrics subjected to different thermal loads. Appl Therm Eng 150:506–511. https://doi.org/10.1016/j.applthermaleng.2019.01.019

    Article  Google Scholar 

  235. Bartkowiak G, Da browska A, Marszałek A, (2013) Analysis of thermoregulation properties of PCM garments on the basis of ergonomic tests. Text Res J 83:148–159. https://doi.org/10.1177/0040517512460299

    Article  CAS  Google Scholar 

  236. Tiest WMB, Kosters ND, Kappers AML, Daanen HAM (2012) Phase change materials and the perception of wetness. Ergonomics 55:508–512. https://doi.org/10.1080/00140139.2011.645886

    Article  Google Scholar 

  237. Li Y, Zhu Q (2004) A model of heat and moisture transfer in porous textiles with phase change materials. Text Res J 74:447–457. https://doi.org/10.1177/004051750407400512

    Article  CAS  Google Scholar 

  238. Li Y, Zhu Q (2003) A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity. Numer Heat Transf Part Appl 43:501–523. https://doi.org/10.1080/10407780307318

    Article  CAS  Google Scholar 

  239. Zhang H, Liu X, Song G, Yang H (2020) Effects of microencapsulated phase change materials on the thermal behavior of multilayer thermal protective clothing. J Text Inst. https://doi.org/10.1080/00405000.2020.1832363

    Article  Google Scholar 

  240. Barauskas R, Sankauskaite A, Rubeziene V et al (2020) Investigation of thermal properties of spacer fabrics with phase changing material by finite element model and experiment. Text Res J 90:1837–1850. https://doi.org/10.1177/0040517520902063

    Article  CAS  Google Scholar 

  241. Siddiqui MOR, Sun D (2017) Development of plug-ins to predict effective thermal conductivity of woven and microencapsulated phase change composite. J Compos Mater 51:733–743. https://doi.org/10.1177/0021998316655202

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project ‘Hybrid Materials for Hierarchical Structures’ (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843) granted by the Ministry of Education, Youth and Sports of the Czech Republic, European Union – European Structural and Investment Funds in the Frames of Operational Programme Research, Development, and Education, the project ‘design of multilayer micro/nanofibrous structures for air filters applications’ (Reg. No. 8JCH1064) granted by the Ministry of Education, Youth and Sports of the Czech Republic in the frames of support for researcher mobility (VES19 China-mobility, Czech–Chinese cooperation). The work was also supported by the project ‘Intelligent thermoregulatory fibers and functional textile coatings based on temperature resistant embedded PCM’ SMARTTHERM (Project No. TF06000048) granted by the Technology Agency of the Czech Republic (DELTA Programme) and the project ‘Advanced structures for thermal insulation in extreme conditions’ (Reg. No. 21-32510M) granted by the Czech Science Foundation (GACR). Last but not least, Kai Yang would like to thank Mr. Yuanfeng Wang for his assistance in organizing the data and providing 3D fabric model for the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Yang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Venkataraman, M., Zhang, X. et al. Review: incorporation of organic PCMs into textiles. J Mater Sci 57, 798–847 (2022). https://doi.org/10.1007/s10853-021-06641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06641-3

Navigation