Skip to main content

Advertisement

Log in

Polybenzoxazine/boron nitride foam: a promising low-k, flame-retardant and robust material

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, we report a facile strategy to prepare polybenzoxazine/boron nitride composites foams with simultaneously improved thermal resistance, flame retardance, mechanical and dielectric properties using a sol–gel method. It is found that the boron nitride (BN) granules are uniformly dispersed and tightly encapsulated within the polymer matrix without any modification. Due to the reinforcement of BN, the compressive stress of the composites foams nearly double, giving the highest value of 14.61 MPa. Moreover, the low densities of the composites foams lead to low dielectric constant and dielectric loss at both low and high frequencies, e.g., the composite foam with 30 wt% BN (F/30BN) show dielectric constant and dielectric loss of 1.42 and 0.0818 (1 MHz), and 1.72 and 0.0013 (1 GHz), respectively. Additionally, the glass transition temperature and char yield of F/30BN reach 190.5 °C and 55.4%, which is 48.6 °C and 33.4% higher than the pristine polybenzoxazine foam. The incorporation of BN also imparts the composites foams with better flame retardancy by delaying combustion and slowing the heat release rate.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications, two-volume set. Academic Press, Cambridge

    Google Scholar 

  2. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26(1):3–65

    Article  CAS  Google Scholar 

  3. Watanabe Y, Shibasaki Y, Ando S, Ueda M (2006) Synthesis and characterization of novel Low-k Polyimides from aromatic dianhydrides and aromatic diamine containing phenylene ether and perfluorobiphenyl units. Polym J 38(1):79–84

    Article  CAS  Google Scholar 

  4. Zuo H-T, Gan F, Dong J, Zhang P, Zhao X, Zhang Q-H (2020) Highly transparent and colorless polyimide film with Low Dielectric constant by introducing meta-substituted structure and trifluoromethyl groups. Chinese J Polym Sci 39(4):455–464

    Article  CAS  Google Scholar 

  5. Yin X, Feng Y, Zhao Q, Li Y, Li S, Dong H, Hu W, Feng W (2018) A highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite film with low dielectric constant. J Mater Chem C 6:6378–6384

    Article  CAS  Google Scholar 

  6. Ming Z, Chen J, Xu Q, Huang Y, Feng Z, Yi G (2018) A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polym Chem 9(21):2913–2925

    Article  Google Scholar 

  7. Velez-Herrera P, Doyama K, Abe H, Ishida H (2008) Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain. Macromolecules 41(24):9704–9714

    Article  CAS  Google Scholar 

  8. Martin SJ, Godschalx JP, Mills ME, Shaffer Ii EO, Townsend PH (2000) Development of a Low-Dielectric-Constant Polymer for the Fabrication of Integrated Circuit Interconnect. Adv Mater 12(23):1769–1778

    Article  CAS  Google Scholar 

  9. Lei X, Tong L, Pan H, Yang G, Liu X (2019) Preparation of polyarylene ether nitriles/fullerene composites with low dielectric constant by cosolvent evaporation. J Mater Sci Mater Electr

  10. Zeidan RK, Hwang SJ, Davis ME (2006) Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew Chem Int Ed 45(38):6332–6335

    Article  CAS  Google Scholar 

  11. Cho MS, Choi HJ, Ahn W-S (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20(1):202–207

    Article  CAS  Google Scholar 

  12. Martin SJ, Godschalx JP, Mills ME, Shaffer EO, Townsend PH (2000) Development of a Low-Dielectric-Constant Polymer for the fabrication of integrated circuit interconnect. Adv Mater 12(23):1769–1778

    Article  CAS  Google Scholar 

  13. Zhang S, Ran Q, Zhang X, Gu Y (2021) Effects of the curing atmosphere on the structures and properties of polybenzoxazine films. J Mater Sci 56(3):2748–2762. https://doi.org/10.1007/s10853-020-05425-5

    Article  CAS  Google Scholar 

  14. Zhang S, Ran Q, Gu Y (2021) Polymerization mechanism of 1,3-benzoxazine catalyzed by PCl5 and rearrangement of chemical structures. Eur Polym J 142:110133. https://doi.org/10.1016/j.eurpolymj.2020.110133

    Article  CAS  Google Scholar 

  15. Zhang K, Liu J, Ishida H (2014) An ultrahigh performance cross-linked polybenzoxazole via thermal conversion from poly(benzoxazine amic acid) based on smart o-benzoxazine chemistry. Macromolecules 47(24):8674–8681

    Article  CAS  Google Scholar 

  16. Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498

    Article  CAS  Google Scholar 

  17. Takeichi T, Agag T (2006) High performance polybenzoxazines as novel thermosets. High Perform Polym High Perform Polym 18:777–797

    Article  CAS  Google Scholar 

  18. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties. Prog Polym Sci 32(11):1344–1391

    Article  CAS  Google Scholar 

  19. Ishida H (2011) Chapter 1 - Overview and historical background of polybenzoxazine research. In: Ishida H, Agag T (eds) Handbook of Benzoxazine Resins. Elsevier, Amsterdam, pp 3–81

    Chapter  Google Scholar 

  20. Kiskan B (2018) Adapting benzoxazine chemistry for unconventional applications. React Funct Polym 129:76–88

    Article  CAS  Google Scholar 

  21. Lyu Y, Ishida H (2019) Natural-sourced benzoxazine resins, homopolymers, blends and composites: A review of their synthesis, manufacturing and applications. Progress Polym Sci 99:101168

    Article  CAS  Google Scholar 

  22. Zhang K, Liu Y, Han M, Froimowicz P (2020) Smart and sustainable design of latent catalyst-containing benzoxazine-bio-resins and application studies. Green Chem 22(4):1209–1219

    Article  CAS  Google Scholar 

  23. Zhang S, Zong J, Ran Q, Gu Y (2020) Facile Preparation of Lightweight and Robust Polybenzoxazine Foams. Ind Eng Chem Res 59(16):7575–7583

    Article  CAS  Google Scholar 

  24. Zhang K, Feng Y, Wang F, Yang Z, Wang J (2017) Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 5(46):11992–12022

    Article  CAS  Google Scholar 

  25. Shi X, Wang K, Tian J, Yin X, Guo B, Xi G, Wang W, Wu W (2020) Few-layer hydroxyl-functionalized boron nitride nanosheets for nanoscale thermal management. ACS Appl Nano Mater 3(3):2310–2321

    Article  CAS  Google Scholar 

  26. Cai W, Guo W, Pan Y, Wang J, Mu X, Feng X, Yuan B, Wang B, Hu Y (2018) Polydopamine-bridged synthesis of ternary h-BN@PDA@SnO2 as nanoenhancers for flame retardant and smoke suppression of epoxy composites. Compos A Appl Sci Manuf 111:94–105

    Article  CAS  Google Scholar 

  27. Qiu X, Li Z, Li X, Yu L, Zhang Z (2019) Construction and flame-retardant performance of layer-by-layer assembled hexagonal boron nitride coatings on flexible polyurethane foams. J Appl Polym Sci 136(29):47839

    Article  CAS  Google Scholar 

  28. Wang J, Ai K, Lu L (2019) Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture. J Mater Chem A, 7

  29. Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J (2004) Boron nitride nanomesh. Science 303(5655):217

    Article  CAS  Google Scholar 

  30. Xu X, Hu R, Chen M, Dong J, Xiao B, Wang Q, Wang H (2020) 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem Eng J 397:125447

    Article  CAS  Google Scholar 

  31. Ambekar RS, Deshmukh A, Suárez-Villagrán MY, Das R, Pal V, Dey S, Miller JH, Machado LD, Kumbhakar P, Tiwary CS (2020) 2D hexagonal boron nitride-coated cotton fabric with self-extinguishing property. ACS Appl Mater Interfaces 12(40):45274–45280

    Article  CAS  Google Scholar 

  32. Ren J, Li Q, Yan L, Jia L, Huang X, Zhao L, Ran Q, Fu M (2020) Enhanced thermal conductivity of epoxy composites by introducing graphene@boron nitride nanosheets hybrid nanoparticles. Mater Des 191:108663

    Article  CAS  Google Scholar 

  33. Dogan M, Dogan SD, Savas LA, Ozcelik G, Tayfun U (2021) Flame retardant effect of boron compounds in polymeric materials. Compos Part B Eng 222:109088

    Article  Google Scholar 

  34. Ran Q-C, Zhang D-X, Zhu R-Q, Gu Y (2012) The structural transformation during polymerization of benzoxazine/FeCl 3 and the effect on the thermal stability. Polymer 53(19):4119–4127

    Article  CAS  Google Scholar 

  35. Zeng K, Huang J, Ren J, Ran Q (2019) Curing reaction of benzoxazine under high pressure and the effect on thermal resistance of polybenzoxazine. Macromol Chem Phys 220(1):1800340

    Article  CAS  Google Scholar 

  36. Macko JA, Ishida H (2001) Effects of phenolic substitution on the photooxidative degradation of polybenzoxazines. Macromol Chem Phys 202(11):2351–2359

    Article  CAS  Google Scholar 

  37. Zhang S, Ran Q, Zhang X, Gu Y (2020) Effects of the curing atmosphere on the structures and properties of polybenzoxazine films. J Mater Sci 56(3):2748–2762. https://doi.org/10.1007/s10853-020-05425-5

    Article  CAS  Google Scholar 

  38. Zhang S, Ran Q, Fu Q, Gu Y (2018) Preparation of transparent and flexible shape memory polybenzoxazine film through chemical structure manipulation and hydrogen bonding control. Macromolecules 51(17):6561–6570. https://doi.org/10.1021/acs.macromol.8b01671

    Article  CAS  Google Scholar 

  39. Zhao L, Yan L, Wei C, Li Q, Huang X, Wang Z, Fu M, Ren J (2020) Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres. J Phys Chem C 124(23):12723–12733

    Article  CAS  Google Scholar 

  40. Ishida H, Krus CM (1998) Synthesis and characterization of structurally uniform model oligomers of polybenzoxazine. Macromolecules 31(8):2409–2418

    Article  CAS  Google Scholar 

  41. Retajczyk TF, Sinha AK (1980) Elastic stiffness and thermal expansion coefficient of BN films. Appl Phys Lett 36(2):161–163

    Article  CAS  Google Scholar 

  42. Guo Y, Lyu Z, Yang X, Lu Y, Ruan K, Wu Y, Kong J, Gu J (2019) Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites. Compos B Eng 164:732–739

    Article  CAS  Google Scholar 

  43. Yang X, Zhu J, Yang D, Zhang J, Guo Y, Zhong X, Kong J, Gu J (2020) High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers, Compos Part B Eng 185

  44. Yue J, Zhao C, Dai Y, Li H, Li Y (2017) Catalytic effect of exfoliated zirconium phosphate on the curing behavior of benzoxazine. Thermochim Acta 650:18–25

    Article  CAS  Google Scholar 

  45. Wang X, Rathore R, Songtipya P, Jimenez-Gasco MDM, Manias E, Wilkie CA (2011) EVA-layered double hydroxide (nano)composites: Mechanism of fire retardancy. Polym Degr Stability 96(3):301–313

    Article  CAS  Google Scholar 

  46. Lu H, Wilkie CA (2010) Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym Degrad Stab 95(12):2388–2395

    Article  CAS  Google Scholar 

  47. Wang L, Xie X, Su S, Feng J, Wilkie CA (2010) A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite. Polym Degrad Stab 95(4):572–578

    Article  CAS  Google Scholar 

  48. Malakooti S, Qin G, Mandal C, Soni R, Taghvaee T, Ren Y, Chen H, Tsao N, Shiao J, Kulkarni SS, Sotiriou-Leventis C, Leventis N, Lu H (2019) Low-cost ambient-dried, superhydrophobic, high strength, thermally insulating, and thermally resilient polybenzoxazine aerogels. ACS Appl Polym Mater 1(9):2322–2333

    Article  CAS  Google Scholar 

  49. Xiao Y, Li L, Zhang S, Feng J, Jiang Y, Feng J (2019) Thermally insulating polybenzoxazine aerogels based on 4,4′-diamino-diphenylmethane benzoxazine. J Mater Sci 54(19):12951–12961. https://doi.org/10.1007/s10853-019-03769-1

    Article  CAS  Google Scholar 

  50. Zhou X, Li Y, Li J, Wang Y, Liu C, Wang L, Li S, Song Y (2020) Preparation and characterization of polybenzoxazine foam with flame retardancy. Polym Adv Technol 31(12):3095–3103

    Article  CAS  Google Scholar 

  51. Ni L, Luo Y, Peng X, Zhou S, Zou H, Liang M (2021) Investigation of the properties and structure of semi-rigid closed-cellular polyimide foams with different diamine structures. Polymer, 229

  52. Feng D, Li L, Wang Q (2019) Fabrication of three-dimensional polyetherimide bead foams via supercritical CO2/ethanol co-foaming technology. RSC Adv 9(7):4072–4081

    Article  CAS  Google Scholar 

  53. Yao Y, Tian H, Yuan L, Wu Q, Xiang A (2019) Improved mechanical, thermal, and flame-resistant properties of polyurethane-imide foams via expandable graphite modification. J Appl Polym Sci, 136(4)

  54. Li J, Zhang G, Yao Y, Jing Z, Zhou L, Ma Z (2016) Synthesis and properties of polyimide foams containing benzimidazole units. RSC Adv 6(65):60094–60100

    Article  CAS  Google Scholar 

  55. Xiao Y, Li L, Liu F, Zhang S, Feng J, Jiang Y, Feng J (2020) Compressible, flame-resistant and thermally insulating fiber-reinforced polybenzoxazine aerogel composites. Mater Basel 13(12)

  56. van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16(8):615–620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuai Zhang or Xiaobo Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1330 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, H., Lan, T. et al. Polybenzoxazine/boron nitride foam: a promising low-k, flame-retardant and robust material. J Mater Sci 56, 18749–18761 (2021). https://doi.org/10.1007/s10853-021-06479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06479-9

Navigation