Skip to main content

Advertisement

Log in

An advanced NiFe-LDH nanoclusters arrays for high-efficient full water splitting

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A rational structural strategy to design rambutan-like NiFe-LDH nanocluster arrays electrode via a buffer-salt-assisted hydrothermal method was reported. For our developed electrode, large stable current density of 100 and 200 mA cm−2 at overpotential of only 283 and 300 mV in oxygen evolution reaction in alkaline electrolyte was obtained, which is dramatically lower than many previous reported overpotentials. It also exhibits low Tafel slope at current range from 10 to 25 mA cm−2 (56.47 mV dec−1). Further analysis demonstrates the key role of higher carriers of the rambutan-like NiFe-LDH nanocluster arrays electrode in boosting the water-splitting performance of the resulting system. Benefiting from the fine geometry shape of the self-supported nanocluster nanoarrays electrode, the transfer process of the reactants and oxygen/hydrogen bubbles is accelerated. In addition, a 19-time enhancement of carrier concentration for our developed rambutan-like NiFe-LDH nanoclusters (2.9 × 1029 m−3) is obtained. Notably, the resultant rambutan-like NiFe-LDH nanocluster arrays electrode exhibits enhanced stability (in high and low current density) for the full water splitting in 1 M KOH, remaining nearly 100% of the original current density after continued testing for 20 h. This finding may provide new insight on rational structural design LDH nanostructures with high performance for electrocatalysis.

Graphic abstract

A highly hydrophilic NiFe-LDH nanocluster arrays electrode is developed for efficient full water splitting. Large and stable current density of 200 mA cm−2 is obtained at overpotential of 300 mV. Besides, the faraday efficiency is nearly 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612. https://doi.org/10.1021/ja104587v

    Article  CAS  Google Scholar 

  2. Dincă M, Surendranath Y, Nocera DG (2010) Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci U.S.A. 107:10337. https://doi.org/10.1073/pnas.1001859107

    Article  Google Scholar 

  3. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068. https://doi.org/10.1021/jp904022e

    Article  CAS  Google Scholar 

  4. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072. https://doi.org/10.1126/science.1162018

    Article  CAS  Google Scholar 

  5. Manikandan A, Ilango PR, Chen C-W, Wang Y-C, Shih Y-C, Lee L, Wang ZM, Ko H, Chueh Y-L (2018) A superior dye adsorbent towards the hydrogen evolution reaction combining active sites and phase-engineering of (1T/2H) MoS2/α-MoO3 hybrid heterostructured nanoflowers. J Mater Chem A 6:15320. https://doi.org/10.1039/C8TA02496K

    Article  CAS  Google Scholar 

  6. Wu C, Zhang J, Tong X, Yu P, Xu J-Y, Wu J, Wang ZM, Lou J, Chueh Y-L (2019) A critical review on enhancement of photocatalytic hydrogen production by molybdenum disulfide: from growth to interfacial activities. Small 15:1900578. https://doi.org/10.1002/smll.201900578

    Article  CAS  Google Scholar 

  7. Ramalingam V, Varadhan P, Fu H-C, Kim H, Zhang D, Chen S, Song L, Ma D, Wang Y, Alshareef HN, He J-H (2019) Heteroatom-mediated interactions between ruthenium single atoms and an mxene support for efficient hydrogen evolution. Adv Mater 31:1903841. https://doi.org/10.1002/adma.201903841

    Article  CAS  Google Scholar 

  8. Alarawi A, Ramalingam V, He J-H (2019) Recent advances in emerging single atom confined two-dimensional materials for water splitting applications. Mater Today Energy 11:1. https://doi.org/10.1016/j.mtener.2018.10.014

    Article  CAS  Google Scholar 

  9. Sriram P, Manikandan A, Chuang F-C, Chueh Y-L (2020) Hybridizing plasmonic materials with 2d-transition metal dichalcogenides toward functional applications. Small 16:1904271. https://doi.org/10.1002/smll.201904271

    Article  CAS  Google Scholar 

  10. Long X, Wang Z, Xiao S, An Y, Yang S (2016) Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater Today 19:213. https://doi.org/10.1016/j.mattod.2015.10.006

    Article  CAS  Google Scholar 

  11. Wang Y, Yan D, El Hankari S, Zou Y, Wang S (2018) Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv Sci 5:1800064. https://doi.org/10.1002/advs.201800064

    Article  CAS  Google Scholar 

  12. Trotochaud L, Young SL, Ranney JK, Boettcher SW (2014) Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J Am Chem Soc 136:6744. https://doi.org/10.1021/ja502379c

    Article  CAS  Google Scholar 

  13. Chen JYC, Dang L, Liang H, Bi W, Gerken JB, Jin S, Alp EE, Stahl SS (2015) Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by mössbauer spectroscopy. J Am Chem Soc 137:15090. https://doi.org/10.1021/jacs.5b10699

    Article  CAS  Google Scholar 

  14. Liu Y, Liang X, Gu L, Zhang Y, Li G-D, Zou X, Chen J-S (2018) Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat Commun 9:2609. https://doi.org/10.1038/s41467-018-05019-5

    Article  CAS  Google Scholar 

  15. Zhong DK, Sun J, Inumaru H, Gamelin DR (2009) Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J Am Chem Soc 131:6086. https://doi.org/10.1021/ja9016478

    Article  CAS  Google Scholar 

  16. Lu X, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616. https://doi.org/10.1038/ncomms7616

    Article  CAS  Google Scholar 

  17. Chen J, Zheng F, Zhang S-J, Fisher A, Zhou Y, Wang Z, Li Y, Xu B-B, Li J-T, Sun S-G (2018) Interfacial interaction between FeOOH and Ni–Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal 8:11342. https://doi.org/10.1021/acscatal.8b03489

    Article  CAS  Google Scholar 

  18. Shang X, Yan K-L, Lu S-S, Dong B, Gao W-K, Chi J-Q, Liu Z-Z, Chai Y-M, Liu C-G (2017) Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J Pow Sour 363:44. https://doi.org/10.1016/j.jpowsour.2017.07.056

    Article  CAS  Google Scholar 

  19. Liu Z, Yu C, Han X, Yang J, Zhao C, Huang H, Qiu J (2016) CoMn layered double hydroxides/carbon nanotubes architectures as high-performance electrocatalysts for the oxygen evolution reaction. ChemElectroChem 3:906. https://doi.org/10.1002/celc.201600116

    Article  CAS  Google Scholar 

  20. Li X, Zai J, Liu Y, He X, Xiang S, Ma Z, Qian X (2016) Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. J Pow Sour 325:675. https://doi.org/10.1016/j.jpowsour.2016.06.090

    Article  CAS  Google Scholar 

  21. Feng Y, Zhang H, Fang L, Mu Y, Wang Y (2016) Uniquely monodispersing NiFe alloyed nanoparticles in three-dimensional strongly linked sandwiched graphitized carbon sheets for high-efficiency oxygen evolution reaction. ACS Catal 6:4477. https://doi.org/10.1021/acscatal.6b00481

    Article  CAS  Google Scholar 

  22. Yu J, Yang F, Cheng G, Luo W (2018) Construction of a hierarchical NiFe layered double hydroxide with a 3D mesoporous structure as an advanced electrocatalyst for water oxidation. Inorg Chem Front 5:1795. https://doi.org/10.1039/C8QI00314A

    Article  CAS  Google Scholar 

  23. Liu J, Wang J, Zhang B, Ruan Y, Lv L, Ji X, Xu K, Miao L, Jiang J (2017) Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl Mater Inter 9:15364. https://doi.org/10.1021/acsami.7b00019

    Article  CAS  Google Scholar 

  24. Zou X, Liu Y, Li G-D, Wu Y, Liu D-P, Li W, Li H-W, Wang D, Zhang Y, Zou X (2017) Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv Mater 29:1700404. https://doi.org/10.1002/adma.201700404

    Article  CAS  Google Scholar 

  25. Luo Y, Tang L, Khan U, Yu Q, Cheng H-M, Zou X, Liu B (2019) Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun 10:269. https://doi.org/10.1038/s41467-018-07792-9

    Article  CAS  Google Scholar 

  26. Li H, Chen S, Zhang Y, Zhang Q, Jia X, Zhang Q, Gu L, Sun X, Song L, Wang X (2018) Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun 9:2452. https://doi.org/10.1038/s41467-018-04888-0

    Article  CAS  Google Scholar 

  27. Quéré D (2005) Non-sticking drops. Rep Prog Phys 68:2495. https://doi.org/10.1088/0034-4885/68/11/r01

    Article  Google Scholar 

  28. Lai Y, Gao X, Zhuang H, Huang J, Lin C, Jiang L (2009) Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv Mater 21:3799. https://doi.org/10.1002/adma.200900686

    Article  CAS  Google Scholar 

  29. Chen J, Li B, Zheng J, Jia S, Zhao J, Jing H, Zhu Z (2011) Role of one-dimensional ribbonlike nanostructures in dye-sensitized TiO2-based solar cells. J Phys Chem C 115:7104. https://doi.org/10.1021/jp2004369

    Article  CAS  Google Scholar 

  30. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026. https://doi.org/10.1021/nl201766h

    Article  CAS  Google Scholar 

  31. Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like nicop for highly efficient overall water splitting. ACS Catal 7:4131. https://doi.org/10.1021/acscatal.7b00662

    Article  CAS  Google Scholar 

  32. Song F, Hu X (2014) Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 5:4477. https://doi.org/10.1038/ncomms5477

    Article  CAS  Google Scholar 

  33. Joensen P, Crozier ED, Alberding N, Frindt RF (1987) A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy. J Phys C Solid State Phys 20:4043. https://doi.org/10.1088/0022-3719/20/26/009

    Article  CAS  Google Scholar 

  34. Wang M, Xu C, Li C, Jin Y (2019) Self-supporting MOF-derived CoNi@C–Au/TiO2 nanotube array Z-scheme heterocatalysts for plasmon-enhanced high-efficiency full water splitting. J Mater Chem A 7:19704. https://doi.org/10.1039/C9TA07776F

    Article  CAS  Google Scholar 

  35. Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9:28. https://doi.org/10.1007/s12274-015-0965-x

    Article  CAS  Google Scholar 

  36. Ding J, Li L, Wang Y, Li H, Yang M, Li G (2020) Topological transformation of LDH nanosheets to highly dispersed PtNiFe nanoalloys enhancing CO oxidation performance. Nanoscale 12:14882. https://doi.org/10.1039/D0NR02272A

    Article  CAS  Google Scholar 

  37. Vassalini I, Borgese L, Mariz M, Polizzi S, Aquilanti G, Ghigna P, Sartorel A, Amendola V, Alessandri I (2017) Enhanced electrocatalytic oxygen evolution in Au–Fe nanoalloys. Angew Chem Int Ed 56:6589. https://doi.org/10.1002/anie.201703387

    Article  CAS  Google Scholar 

  38. Zhang C, Liu Y, Chang Y, Lu Y, Zhao S, Xu D, Dai Z, Han M, Bao J (2017) Component-controlled synthesis of necklace-like hollow NixRuy nanoalloys as electrocatalysts for hydrogen evolution reaction. ACS Appl Mater Inter 9:17326. https://doi.org/10.1021/acsami.7b01114

    Article  CAS  Google Scholar 

  39. Nair AS, Pathak B (2021) Computational strategies to address the catalytic activity of nanoclusters. WIREs Comput Mol Sci 11:e1508. https://doi.org/10.1002/wcms.1508

    Article  CAS  Google Scholar 

  40. Asnavandi M, Zhao C (2017) Autologous growth of nickel oxyhydroxides with in situ electrochemical iron doping for efficient oxygen evolution reactions. Mater Chem Front 1:2541. https://doi.org/10.1039/C7QM00367F

    Article  CAS  Google Scholar 

  41. Li X, Hao X, Wang Z, Abudula A, Guan G (2017) In-situ intercalation of NiFe LDH materials: an efficient approach to improve electrocatalytic activity and stability for water splitting. J Pow Sour 347:193. https://doi.org/10.1016/j.jpowsour.2017.02.062

    Article  CAS  Google Scholar 

  42. Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo MT, Hong M, Yan X, Qian G, Zou J, Du A, Yao X (2017) A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv Mater 29:1700017. https://doi.org/10.1002/adma.201700017

    Article  CAS  Google Scholar 

  43. Jiang X-X, Xue J-Y, Zhao Z-Y, Li C, Li F-L, Cao C, Niu Z, Gu H-W, Lang J-P (2020) Ultrathin sulfate-intercalated NiFe-layered double hydroxide nanosheets for efficient electrocatalytic oxygen evolution. RSC Adv 10:12145. https://doi.org/10.1039/d0ra00845a

    Article  CAS  Google Scholar 

  44. Cui M, Yang C, Li B, Dong Q, Wu M, Hwang S, Xie H, Wang X, Wang G, Hu L (2020) High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv Energy Mater. https://doi.org/10.1002/aenm.202002887

    Article  Google Scholar 

  45. Meng X, Han J, Lu L, Qiu G, Wang ZL, Sun C (2019) Fe2+-doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems. Small 15:1902551. https://doi.org/10.1002/smll.201902551

    Article  CAS  Google Scholar 

  46. Nai J, Lu Y, Yu L, Wang X, Lou XW (2017) Formation of Ni–Fe mixed diselenide nanocages as a superior oxygen evolution electrocatalyst. Adv Mater 29:1703870. https://doi.org/10.1002/adma.201703870

    Article  CAS  Google Scholar 

  47. Dong C, Kou T, Gao H, Peng Z, Zhang Z (2018) Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv Energy Mater 8:1701347. https://doi.org/10.1002/aenm.201701347

    Article  CAS  Google Scholar 

  48. Zhang X, Xu H, Li X, Li Y, Yang T, Liang Y (2016) Facile synthesis of nickel–iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. ACS Catal 6:580. https://doi.org/10.1021/acscatal.5b02291

    Article  CAS  Google Scholar 

  49. Piontek S, Andronescu C, Zaichenko A, Konkena B, Puring KJ, Marler B, Antoni H, Sinev I, Muhler M, Mollenhauer D, Cuenya BR, Schuhmann W, Apfel U-P (2018) Influence of the Fe: Ni ratio and reaction temperature on the efficiency of (FexNi1–x)9S8 electrocatalysts applied in the hydrogen evolution reaction. ACS Catal 8:987. https://doi.org/10.1021/acscatal.7b02617

    Article  CAS  Google Scholar 

  50. Babar P, Lokhande A, Shin HH, Pawar B, Gang MG, Pawar S, Kim JH (2018) Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting. Small 14:1702568. https://doi.org/10.1002/smll.201702568

    Article  CAS  Google Scholar 

  51. Laurens LML, Markham J, Templeton DW, Christensen ED, Van Wychen S, Vadelius EW, Chen-Glasser M, Dong T, Davis R, Pienkos PT (2017) Development of algae biorefinery concepts for biofuels and bioproducts; a perspective on process-compatible products and their impact on cost-reduction. Energy Environ Sci 10:1716. https://doi.org/10.1039/C7EE01306J

    Article  CAS  Google Scholar 

  52. Zhang H, Li X, Hähnel A, Naumann V, Lin C, Azimi S, Schweizer SL, Maijenburg AW, Wehrspohn RB (2018) Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv Funct Mater 28:1706847. https://doi.org/10.1002/adfm.201706847

    Article  CAS  Google Scholar 

  53. Dinh KN, Zheng P, Dai Z, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q (2018) Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 14:1703257. https://doi.org/10.1002/smll.201703257

    Article  CAS  Google Scholar 

  54. Wang Z, Zeng S, Liu W, Wang X, Li Q, Zhao Z, Geng F (2017) Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl Mater Inter 9:1488. https://doi.org/10.1021/acsami.6b13075

    Article  CAS  Google Scholar 

  55. Rajeshkhanna G, Kandula S, Shrestha KR, Kim NH, Lee JH (2018) A new class of Zn1-xFex–oxyselenide and Zn1- xFex–LDH nanostructured material with remarkable bifunctional oxygen and hydrogen evolution electrocatalytic activities for overall water splitting. Small 14:1803638. https://doi.org/10.1002/smll.201803638

    Article  CAS  Google Scholar 

  56. Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345:1593. https://doi.org/10.1126/science.1258307

    Article  CAS  Google Scholar 

  57. Feng L-L, Yu G, Wu Y, Li G-D, Li H, Sun Y, Asefa T, Chen W, Zou X (2015) High-Index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J Am Chem Soc 137:14023. https://doi.org/10.1021/jacs.5b08186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Jiangsu Province (BK20190918) and Natural Science Research Projects of Universities in Jiangsu Province (19KJB430030). We are also very grateful to the Nantong University Analytical Testing Center for its support for testing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Wang, Jinli Zhu or Minmin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1875 KB)

Supplementary file2 (MP4 2391 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Zhang, M., Wei, X. et al. An advanced NiFe-LDH nanoclusters arrays for high-efficient full water splitting. J Mater Sci 56, 19466–19475 (2021). https://doi.org/10.1007/s10853-021-06451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06451-7

Navigation