Skip to main content
Log in

Influence of material and process parameters on microstructure evolution during the fabrication of carbon–carbon composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon–carbon composites (CCCs) are a unique form of carbon fiber-reinforced materials that exhibit excellent thermomechanical properties under extreme environmental conditions. Due to the need for the retention of mechanical properties at temperatures exceeding 2000 °C, CCCs have been utilized in heat shields, rocket nozzles, aircraft brakes, and leading edge material in hypersonic vehicles. In order to expand the applicability of CCCs, the fabrication process must be modified such that there is a reduction in cost or processing time. It is hypothesized that maximizing the permeability of the composite, during processing, will grant the largest reduction in the fabrication time as it leads to a larger volume of pores filled during re-densification. This review attempts to capture the various parameters that have led to increased permeability, as well as outlining process modifications that have demonstrated influence over the carbonized microstructure. In addition, this review seeks to differentiate itself by systematically outlining research advances that have been made in each step of the fabrication process. In doing so, scientific gaps that exist can be expounded upon while simultaneously summarizing what is necessary to advance the field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from reference [1] Copyright 1998, Springer, c is reprinted under creative commons attribution 4.0, and d reproduced with permission from reference [20] Copyright 2006, Elsevier

Figure 2

Reproduced with permission from reference [1] Copyright 1998, Springer

Figure 3

Reproduced with permission from reference: b [46] Copyright 1993, Springer; c [55] Copyright 1985, Elsevier

Figure 4

Copyright 2006, Elsevier

Figure 5

Reproduced with permission from reference [69] Copyright 2006, Elsevier

Figure 6
Figure 7

Reproduced with permission from: a reference [95] Copyright 1993, Elsevier; b [93] Copyright 1987, Springer

Figure 8

Reproduced with permission from reference: a [29] Copyright 1971, Nature; b [38] Copyright 2001, Wiley

Figure 9
Figure 10

Reproduced with permission from reference [98] Copyright 2013, Elsevier

Figure 11

Reproduced with permission from reference: a [81] Copyright 2004, Elsevier; b [88] Copyright 2005, Elsevier

Figure 12

Reproduced with permission from reference [100] Copyright 2011, Elsevier

Figure 13

Reproduced with permission from reference [102] Copyright 2014, Springer

Figure 14

Copyright 1996, Elsevier

Figure 15
Figure 16
Figure 17

Reproduced with permission from reference: a [138] Copyright 2002, Elsevier; b [139] Copyright 2018, Elsevier

Figure 18

Reproduced with permission from reference: left [118] Copyright 1990, Elsevier; right [121] Copyright 1984, Elsevier

Figure 19

Copyright 1999, Springer

Figure 20

Copyright 1997 American chemical society

Figure 21

Reproduced with permission from reference: left [147] Copyright 1993, Elsevier; right [146] Copyright 2013, Elsevier

Figure 22

Copyright 2019, Springer

Figure 23
Figure 24

Reproduced with permission from reference [43] Copyright 2017, Elsevier

Figure 25

Copyright 1995, Elsevier; b [154] Copyright 1968, Elsevier; c and d [26] Copyright 1951, royal society

Figure 26

Reproduced with permission from reference: a [8] Copyright 2003, Elsevier; b [138] Copyright 2002, Elsevier

Figure 27

reproduced with permission from reference [31] Copyright 1984, Elsevier

Similar content being viewed by others

References

  1. Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites, 1st edn. Springer, Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58745-0

    Book  Google Scholar 

  2. Stepashkin AA, Ozherelkov DY, Sazonov YB, Komissarov AA (2019) Fracture toughness evolution of a carbon/carbon composite after low-cycle fatigue. Eng Fract Mech 206:442–451. https://doi.org/10.1016/j.engfracmech.2018.12.018

    Article  Google Scholar 

  3. Wang T, Li H, Zhang S, Li K, Li W (2020) The effect of microstructural evolution on micromechanical behavior of pyrolytic carbon after heat treatment. Diam Relat Mater 103:107729. https://doi.org/10.1016/j.diamond.2020.107729

    Article  CAS  Google Scholar 

  4. Zhao JG, Li KZ, Li HJ, Wang C, Zhai YQ (2006) The thermal expansion of carbon/carbon composites from room temperature to 1400 °C. J Mater Sci 41:8356–8358. https://doi.org/10.1007/s10853-006-1073-9

    Article  CAS  Google Scholar 

  5. Jia J, Liu S, Xia T, Zhang B, Zhang S, Ji G (2020) Novel unidirectional porous carbon/carbon composites prepared by a special designed space holder method. Ceram Int 46:15197–15205. https://doi.org/10.1016/j.ceramint.2020.03.056

    Article  CAS  Google Scholar 

  6. Ko T-H (1993) The effect of pyrolysis on the mechanical properties and microstructure of carbon fiber-reinforced and stabilized fiber-reinforced phenolic resins for carbon/carbon composites. Polym Compos 14(3):247–256. https://doi.org/10.1002/pc.750140310

    Article  CAS  Google Scholar 

  7. Hatta H, Goto K, Sato T, Tanatsugu N (2003) Applications of carbon-carbon composites to an engine for a future space vehicle. Adv Compos Mater Off J Japan Soc Compos Mater 12(2–3):237–259. https://doi.org/10.1163/156855103772658588

    Article  CAS  Google Scholar 

  8. Aly-Hassan MS, Hatta H, Wakayama S, Watanabe M, Miyagawa K (2003) Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon N Y 41:1069–1078. https://doi.org/10.1016/S0008-6223(02)00442-6

    Article  CAS  Google Scholar 

  9. Fitzer E, Schäfer W (1970) The effect of crosslinking on the formation of glasslike carbons from thermosetting resins. Carbon N Y 8:353–364. https://doi.org/10.1016/0008-6223(70)90075-8

    Article  CAS  Google Scholar 

  10. Fitzer E, Geigl KH, Hüttner W (1980) The influence of carbon fibre surface treatment on the mechanical properties of carbon/carbon composites. Carbon N Y 18:265–270. https://doi.org/10.1016/0008-6223(80)90049-4

    Article  CAS  Google Scholar 

  11. Yu S, Zhang F, Xiong X, Li Y, Tang N, Koizumi Y, Chiba A (2013) Tribological properties of carbon/carbon composites with various pyrolytic carbon microstructures. Wear 304:103–108. https://doi.org/10.1016/j.wear.2013.04.031

    Article  CAS  Google Scholar 

  12. Ren J, Li K, Zhang S, Yao X, Tian S (2015) Preparation of carbon/carbon composite by pyrolysis of ethanol and methane. Mater Des 65:174–178. https://doi.org/10.1016/j.matdes.2014.08.036

    Article  CAS  Google Scholar 

  13. Sun J, Li H, Han L, Song Q (2019) Enhancing both strength and toughness of carbon/carbon composites by heat-treated interface modification. J Mater Sci Technol 35:383–393. https://doi.org/10.1016/j.jmst.2018.09.055

    Article  Google Scholar 

  14. Kar KK (2017) Composite materials. Springer, Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8

    Book  Google Scholar 

  15. Delhaes P (2002) Chemical vapor deposition and infiltration processes of carbon materials. Carbon N Y 40:641–657. https://doi.org/10.1016/S0008-6223(01)00195-6

    Article  CAS  Google Scholar 

  16. Anilas K, Surendranathan AO (2018) Carbon-Carbon Composites – A Review. UPI J Eng Technol 1:8–19

  17. Zhang S, Zhang Y, Li A, Chen Q, Shi X, Huang J, Hu Z (2018) Carbon Composites. In: Composite materials and engineering, vol 2. Springer, Singapore, pp 531–617. https://doi.org/10.1007/978-981-10-5690-1_5

  18. Njuguna J (2016) Lightweight composite structures in transport. Elsevier. https://doi.org/10.1016/C2014-0-02646-9

    Book  Google Scholar 

  19. Friedrich K, Breuer U (2015) Multifunctionality of polymer composites. Elsevier. https://doi.org/10.1016/C2013-0-13006-1

    Book  Google Scholar 

  20. Jacobson NS, Curry DM (2006) Oxidation microstructure studies of reinforced carbon/carbon. Carbon N Y 44:1142–1150. https://doi.org/10.1016/j.carbon.2005.11.013

    Article  CAS  Google Scholar 

  21. Reichert F, Pérez-Mas AM, Barreda D, Blanco C, Santamaria R, Kuttner C, Fery A, Langhof N, Krenkel W (2017) Influence of the carbonization temperature on the mechanical properties of thermoplastic polymer derived C/C-SiC composites. J Eur Ceram Soc 37:523–529. https://doi.org/10.1016/j.jeurceramsoc.2016.09.005

    Article  CAS  Google Scholar 

  22. Yee W (2016) Oxidation of carbon-carbon composite, Southern Illinois University, Carbondale

  23. Zhu Y, Zhang Q, Meng X, Yan L, Cui H (2020) Adhesive joint properties of advanced carbon/ceramic composite and tungsten–copper alloy for the hybrid rocket nozzle. Int J Adhes Adhes 102:102670. https://doi.org/10.1016/j.ijadhadh.2020.102670

    Article  CAS  Google Scholar 

  24. Kasen S (2013) Thermal management at hypersonic leading edges. University of Virginia

  25. Viviani A, Pezzella G (2009) Heat transfer analysis for a winged reentry flight test bed. Int J Eng 3:329–345

    Google Scholar 

  26. Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc R Soc Lond Ser A Math Phys Sci 209:196–218. https://doi.org/10.1098/rspa.1951.0197

    Article  CAS  Google Scholar 

  27. Wilson RG (1965) Thermophysical properties of six charring ablators from 140 K to 700 K and two chars from 800 to 3000 K. NASA Langley Research Center, Hampton, VA. http://ntrs.nasa.gov/search.jsp?R=19650024901

  28. Mackay HA (1970) The influence of polymer structure on the conversion of synthetic resins to carbon-coke. Carbon N Y 8:517–526. https://doi.org/10.1016/0008-6223(70)90014-X

    Article  CAS  Google Scholar 

  29. Jenkins GM, Kawamura K (1971) Structure of glassy carbon. Nature 231:175–176. https://doi.org/10.1038/231175a0

    Article  CAS  Google Scholar 

  30. Funabiki K, Masayuki N, Masaaki T (1981) Carbonization of phenolic resins. Jpn Thermosetting Plast Ind Assoc 2:220–235. https://doi.org/10.11364/networkpolymer1980.2.220

    Article  CAS  Google Scholar 

  31. Oberlin A (1984) Carbonization and graphitization. Carbon N Y 22:521–541. https://doi.org/10.1016/0008-6223(84)90086-1

    Article  CAS  Google Scholar 

  32. Inagaki M, Kuroda K, Sakai M, Yasuda E, Kimura S (1984) Carbonization of fractionated pitches under pressure. Carbon N Y 22:335–339. https://doi.org/10.1016/0008-6223(84)90003-4

    Article  CAS  Google Scholar 

  33. Rellick G (1990) Densification efficiency of carbon-carbon composites. Carbon N Y 28:589–594. https://doi.org/10.1016/0008-6223(90)90057-6

    Article  CAS  Google Scholar 

  34. Nam JD, Seferis JC (1992) Initial polymer degradation as a process in the manufacture of carbon-carbon composites. Carbon N Y 30(5):751–761. https://doi.org/10.1016/0008-6223(92)90158-S

    Article  CAS  Google Scholar 

  35. Golecki I, Morris RC, Narasimhan D, Clements N (1995) Rapid densification of porous carbon–carbon composites by thermal-gradient chemical vapor infiltration. Appl Phys Lett 66:2334–2336. https://doi.org/10.1063/1.113974

    Article  CAS  Google Scholar 

  36. Trick KA, Saliba TE (1995) Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon N Y 33:1509–1515. https://doi.org/10.1016/0008-6223(95)00092-R

    Article  CAS  Google Scholar 

  37. Bruneton E, Narcy B, Oberlin A (1997) Carbon-carbon composites prepared by a rapid densification process II: structural and textural characterizations. Carbon N Y 35:1599–1611. https://doi.org/10.1016/S0008-6223(97)00119-X

    Article  CAS  Google Scholar 

  38. Ko TH, Kuo WS, Chang YH (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81:1084–1089. https://doi.org/10.1002/app.1530

    Article  CAS  Google Scholar 

  39. Kuo HH, Lin JHC, Ju CP (2005) Effect of carbonization rate on the properties of a PAN/phenolic-based carbon/carbon composite. Carbon N Y 43:229–239. https://doi.org/10.1016/j.carbon.2004.08.024

    Article  CAS  Google Scholar 

  40. Gupta D, Evans JW (1991) A mathematical model for chemical vapor infiltration with microwave heating and external cooling. J Mater Res 6:810–818. https://doi.org/10.1557/JMR.1991.0810

    Article  CAS  Google Scholar 

  41. Zeng X, Zou J, Qian H, Xiong X, Li X, Xie S (2009) Microwave assisted chemical vapor infiltration for the rapid fabrication of carbon/carbon composites. New Carbon Mater 24:28–32. https://doi.org/10.1016/S1872-5805(08)60033-5

    Article  CAS  Google Scholar 

  42. Laborde P, Toson B, Odunlami M (2011) High temperature damage model for carbon-carbon composites. Eur J Mech A/Solids 30:256–268. https://doi.org/10.1016/j.euromechsol.2010.12.014

    Article  Google Scholar 

  43. Yin T, Wang Y, He L, Gong X (2017) Stress and damage development in the carbonization process of manufacturing carbon/carbon composites. Comput Mater Sci 138:27–33. https://doi.org/10.1016/j.commatsci.2017.06.014

    Article  CAS  Google Scholar 

  44. Chowdhury P, Sehitoglu H, Rateick R (2018) Damage tolerance of carbon-carbon composites in aerospace application. Carbon N Y 126:382–393. https://doi.org/10.1016/j.carbon.2017.10.019

    Article  CAS  Google Scholar 

  45. Savage G (1993) Carbn-carbon composite. Oxidation and oxidation protection, Springer, Dordrecht

    Book  Google Scholar 

  46. Savage G (1993) Carbon-carbon composites. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-011-1586-5

    Book  Google Scholar 

  47. Wang B, Xu B, Li H (2019) Fabrication and properties of carbon/carbon-carbon foam composites. Text Res J 89:4452–4460. https://doi.org/10.1177/0040517519836942

    Article  CAS  Google Scholar 

  48. Sharma S, Patel RH, Patel BK (2020) Comparative study on the carbon–carbon composites developed from petroleum pitch, coal tar pitch, and their mixture. J Compos Mater. https://doi.org/10.1177/0021998320914068

    Article  Google Scholar 

  49. Sharma S, Patel RH (2019) Processing and characterization of robust carbon–carbon composites from inexpensive petroleum pitch without re-impregnation process. Compos Part B Eng 174:106943. https://doi.org/10.1016/j.compositesb.2019.106943

    Article  CAS  Google Scholar 

  50. Lee KJ, Cheng HZ, Chen JS (2006) Effect of densification cycles on continuous friction behavior of carbon-carbon composites. Wear 260:99–108. https://doi.org/10.1016/j.wear.2004.12.036

    Article  CAS  Google Scholar 

  51. Staab GH (1999) Introduction to composite materials. In Laminar Compos, Elsevier, pp 1–16. https://doi.org/10.1016/B978-075067124-8/50001-1

    Book  Google Scholar 

  52. Saleh MN, Yudhanto A, Lubineau G, Soutis C (2017) The effect of z-binding yarns on the electrical properties of 3D woven composites. Compos Struct 182:606–616. https://doi.org/10.1016/j.compstruct.2017.09.081

    Article  Google Scholar 

  53. Xie W, Yang F, Meng S, Scarpa F, Wang L (2020) Perforation of needle-punched carbon-carbon composites during high-temperature and high-velocity ballistic impacts. Compos Struct 245:112224. https://doi.org/10.1016/j.compstruct.2020.112224

    Article  Google Scholar 

  54. Das S, Kandan K, Kazemahvazi S, Wadley HNG, Deshpande VS (2018) Compressive response of a 3D non-woven carbon-fibre composite. Int J Solids Struct 136–137:137–149. https://doi.org/10.1016/j.ijsolstr.2017.12.011

    Article  CAS  Google Scholar 

  55. Marinković S, Dimitruević S (1985) Carbon/carbon composites prepared by chemical vapour deposition. Carbon N Y 23:691–699. https://doi.org/10.1016/0008-6223(85)90230-1

    Article  Google Scholar 

  56. Su JM, Xiao ZC, Liu YQ, Meng FC, Peng ZG, Gu LM, Li GF, Xing RP (2010) Preparation and characterization of carbon/carbon aircraft brake materials with long service life and good frictional properties. Xinxing Tan Cailiao/New Carbon Mater 25:329–334. https://doi.org/10.1016/S1872-5805(09)60037-8

    Article  CAS  Google Scholar 

  57. Lieberman ML, Curlee RM, Braaten FH, Noles GT (1975) CVD/PAN felt carbon/carbon composites. J Com 9:337–346. https://doi.org/10.1007/978-981-10-5690-1_5

    Article  CAS  Google Scholar 

  58. Tang Z, Qu D, Xiong J, Zou Z (2003) Effects of infiltration conditions on the densification behavior of carbon/carbon composites prepared by a directional-flow thermal gradient CVI process. Carbon 41:2703–2710

    Article  CAS  Google Scholar 

  59. Zhao J, Li H, Wang C (2006) The influence of thermal gradient on pyrocarbon deposition in carbon/carbon composites during the CVI process. Carbon 44:786–791. https://doi.org/10.1016/j.carbon.2005.08.030

    Article  CAS  Google Scholar 

  60. Coltelli M-B, Lazzeri A (2019) Chemical vapour infiltration of composites and their applications. In: Chemical vapor deposition. CRC Press, pp 363–390. https://doi.org/10.1201/9781315117904-8

    Google Scholar 

  61. Hao M, Luo R, Hou Z, Yang W, Zhang Y, Yang C (2014) Effect of structure of pyrocarbon on the static and dynamic mechanical properties of carbon/carbon composites. Mater Sci Eng A 614:156–161. https://doi.org/10.1016/j.msea.2014.07.038

    Article  CAS  Google Scholar 

  62. Zhang WG, Hüttinger KJ (2003) Densification of a 2D carbon fiber preform by isothermal, isobaric CVI: kinetics and carbon microstructure. Carbon N Y 41:2325–2337. https://doi.org/10.1016/S0008-6223(03)00284-7

    Article  CAS  Google Scholar 

  63. Xuefeng L, Jie Z, Kun Q (2019) Densification rate and mechanical properties of carbon/carbon composites with layer-designed preform. Ceram Int 45:4167–4175. https://doi.org/10.1016/j.ceramint.2018.11.085

    Article  CAS  Google Scholar 

  64. Li J, Luo R, Yan Y (2011) Densification kinetics and matrix microstructure of carbon fiber/carbon nanofiber/pyrocarbon composites prepared by electrophoresis and thermal gradient chemical vapor infiltration. Carbon N Y 49:242–248. https://doi.org/10.1016/j.carbon.2010.09.011

    Article  CAS  Google Scholar 

  65. Vaidyaraman S, Lackey WJ, Agrawal PK, Starr TL (1996) 1-D model for forced flow-thermal gradient chemical vapor infiltration process for carbon/carbon composites. Carbon N Y 34:1123–1133. https://doi.org/10.1016/0008-6223(96)00086-3

    Article  CAS  Google Scholar 

  66. Kaiyu J, Hejun L, Minjie W (2002) The numerical simulation of thermal-gradient CVI process on positive pressure condition. Mater Lett 54:419–423. https://doi.org/10.1016/S0167-577X(01)00603-6

    Article  Google Scholar 

  67. Ramadan Z, Choi Y, Lee J, Im D, Im IT (2015) Three-dimensional heat transfer analysis of a TG-CVI reactor. In: Zhou J, Adiguzel O (eds) 4th International Conference on Material Science and Engineering Technology. Singapore, p 03008. https://doi.org/10.1051/matecconf/20153003008

  68. David PG, Blein J, Robin-Brosse C (2007) Rapid densification of carbon and ceramic matrix composites materials by film boiling process. In: 16th International Conference on Composite Materials. Kyoto, Japan, pp 2–6

  69. Vignoles GL, Goyhénèche JM, Sébastian P, Puiggali JR, Lines JF, Lachaud J, Delhaès P, Trinquecoste M (2006) The film-boiling densification process for C/C composite fabrication: from local scale to overall optimization. Chem Eng Sci 61:5636–5653. https://doi.org/10.1016/j.ces.2006.04.025

    Article  CAS  Google Scholar 

  70. Delhaès P, Trinquecoste M, Lines JF, Cosculluela A, Goyhénèche JM, Couzi M (2005) Chemical vapor infiltration of C/C composites: fast densification processes and matrix characterizations. Carbon N Y 43:681–691. https://doi.org/10.1016/j.carbon.2004.10.030

    Article  CAS  Google Scholar 

  71. Wang JP, Qian JM, Qiao GJ, Jin ZH (2006) Improvement of film boiling chemical vapor infiltration process for fabrication of large size C/C composite. Mater Lett 60:1269–1272. https://doi.org/10.1016/j.matlet.2005.11.012

    Article  CAS  Google Scholar 

  72. Paul J, Santhosh B, Ananthapadmanabhan EN, Das PK (2021) Behavior of carbon matrix in carbon fiber reinforced composites (CFRC) synthesized through the film boiling chemical vapor infiltration (FB-CVI) process. Ceram Int 47:14695–14706. https://doi.org/10.1016/j.ceramint.2021.01.222

    Article  CAS  Google Scholar 

  73. Abali F, Shivakumar K, Hamidi N, Sadler R (2003) An RTM densification method of manufacturing carbon-carbon composites using primaset PT-30 resin. Carbon N Y 41:893–901. https://doi.org/10.1016/S0008-6223(02)00434-7

    Article  CAS  Google Scholar 

  74. Wang YX, Ishida H (2002) Development of low-viscosity benzoxazine resins and their polymers. J Appl Polym Sci 86:2953–2966. https://doi.org/10.1002/app.11190

    Article  CAS  Google Scholar 

  75. Rimdusit S, Punson K, Dueramae I, Somwangthanaroj A, Tiptipakorn S (2011) Rheological and thermomechanical characterizations of fumed silica-filled polybenzoxazine nanocomposites. Eng J 15:27–38. https://doi.org/10.4186/ej.2011.15.3.27

    Article  Google Scholar 

  76. Briggs DKH (1980) Viscosity of coal tar pitch at elevated temperatures. Fuel 59:201–207. https://doi.org/10.1016/0016-2361(80)90167-2

    Article  CAS  Google Scholar 

  77. Bhatia G, Aggarwal RK, Bahl OP (1992) Effect of pressure on the coking yields of coal tar pitches. J Mater Sci 27:4337–4340. https://doi.org/10.1007/BF00541563

    Article  CAS  Google Scholar 

  78. Kershaw JR (1993) The chemical composition of a coal-tar pitch. Polycycl Aromat Compd 3:185–197. https://doi.org/10.1080/10406639308047870

  79. Kessler M (2009) Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites. Iowa State University

  80. Ramirez ML, Walters R, Lyon RE, Savitski EP (2002) Thermal decomposition of cyanate ester resins. Polym Degrad Stab 78:73–82. https://doi.org/10.1016/S0141-3910(02)00121-0

    Article  CAS  Google Scholar 

  81. Klučáková M (2004) Rheological properties of phenolic resin as a liquid matrix precursor for impregnation of carbon-carbon composites with respect to conditions of the densification process. Compos Sci Technol 64:1041–1047. https://doi.org/10.1016/j.compscitech.2003.09.013

    Article  CAS  Google Scholar 

  82. Shaghaghi S, Beheshty MH, Rahimi H (2011) Preparation and rheological characterization of phenolic/glass prepregs, Iran. Polym J (English Ed) 20:969–977

    CAS  Google Scholar 

  83. Patel P, Hull TR, Lyon RE, Stoliarov SI, Walters RN, Crowley S, Safronava N (2011) Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym Degrad Stab 96:12–22. https://doi.org/10.1016/j.polymdegradstab.2010.11.009

    Article  CAS  Google Scholar 

  84. Chuang KC, Criss JM, Mintz EA, Scheiman DA, Nguyen BN, McCorkle LS (2007) Low-melt viscosity polyimide resins for Resin Transfer Molding (RTM) II. In: International SAMPE Symposium and Exhibition. Baltimore, MD

  85. Van Krevelen DW (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615–620

    Article  Google Scholar 

  86. Atabaki F, Keshavarz MH, Bastam NN (2017) A simple method for the reliable prediction of char yield of polymers. Zeitschrift Fur Anorg Und Allg Chemie 643:1049–1056. https://doi.org/10.1002/zaac.201700197

    Article  CAS  Google Scholar 

  87. Klucakova M (2006) Efficiency of densification process in preparation of carbon-carbon composites. Int J Phys Sci 1:121–125

    Google Scholar 

  88. Klučáková M (2005) Analysis of relationship between properties and behaviour of materials used and impregnation conditions of carbon-carbon composites. Acta Mater 53:3841–3848. https://doi.org/10.1016/j.actamat.2005.04.033

    Article  CAS  Google Scholar 

  89. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum 100:9–562

    Google Scholar 

  90. Li M, Zhang Y, Yu S, Xie C, Liu D, Liu S, Zhao R, Bian B (2018) Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation. RSC Adv 8:30230–30238. https://doi.org/10.1039/c8ra04679d

    Article  CAS  Google Scholar 

  91. Yuan G, Cui Z (2020) Preparation, characterization, and applications of carbonaceous mesophase: a review. Liquid crystals and display technology. IntechOpen, pp 1–20. https://doi.org/10.5772/intechopen.88860

    Chapter  Google Scholar 

  92. Arai Y, Tomioka T, Matsumoto M, Kobayashi K (1992) Determination of solid impurities in mesophase pitch by a filtration model of a binary-mixture cake. J Chem Eng Japan 25:415–419. https://doi.org/10.1252/jcej.25.415

    Article  CAS  Google Scholar 

  93. Mochida S, Fei YQ, Oyama T, Korai Y, Fujitsu H (1987) Carbonization of coal-tar pitch into lump needle coke in a tube bomb. J Mater Sci 22:3989–3994. https://doi.org/10.1007/BF01133349

    Article  CAS  Google Scholar 

  94. Trofimovich MA, Galiguzov AA, Malakho AP, Avdeev VV (2015) Effect of pressure on carbonization of coal tar pitch of different composition. Refract Ind Ceram 56:286–291. https://doi.org/10.1007/s11148-015-9832-2

    Article  CAS  Google Scholar 

  95. Fujiura R, Kojima T, Kanno K, Mochida I, Korai Y (1993) Evaluation of naphthalene-derived mesophase pitches as a binder for carbon-carbon composites. Carbon N Y 31:97–102. https://doi.org/10.1016/0008-6223(93)90161-3

    Article  CAS  Google Scholar 

  96. Kromrey RV (1991) Method of molding a carbon-carbon composite. United States Patent: 5009823

  97. Dang A, Li H, Li T, Zhao T, Xiong C, Zhuang Q, Shang Y, Chen X, Ji X (2016) Preparation and pyrolysis behavior of modified coal tar pitch as C/C composites matrix precursor. J Anal Appl Pyrolysis 119:18–23. https://doi.org/10.1016/j.jaap.2016.04.002

    Article  CAS  Google Scholar 

  98. Bansal D, Pillay S, Vaidya U (2013) Nanographite-reinforced carbon/carbon composites. Carbon N Y 55:233–244. https://doi.org/10.1016/j.carbon.2012.12.032

    Article  CAS  Google Scholar 

  99. Park SJ, Cho MS (2000) Effect of anti-oxidative filler on the interfacial mechanical properties of carbon-carbon composites measured at high temperature. Carbon N Y 38:1053–1058. https://doi.org/10.1016/S0008-6223(99)00210-9

    Article  CAS  Google Scholar 

  100. Li H, Li H, Lu J, Sun C, Wang Y, Yao D, Li K, Wang H (2011) Improvement in toughness of carbon/carbon composites using multiple matrixes. Mater Sci Eng A 530:57–62. https://doi.org/10.1016/j.msea.2011.09.038

    Article  CAS  Google Scholar 

  101. Chłopek J, Błazewicz S, Powroźnik A (1993) Mechanical properties of carbon-carbon composites. Ceram Int 19:251–257. https://doi.org/10.1016/0272-8842(93)90057-X

    Article  Google Scholar 

  102. Shao HC, Xia HY, Liu GW, Qiao GJ, Xiao ZC, Su JM, Zhang XH, Li YJ (2014) Densification behavior and performances of C/C composites derived from various carbon matrix precursors. J Mater Eng Perform 23:133–141. https://doi.org/10.1007/s11665-013-0667-z

    Article  CAS  Google Scholar 

  103. Goto KS, Han KH, Pierre GRSt (1986) A review on oxidation kinetics of carbon fiber/carbon matrix composites at high temperature. Trans Iron Steel Inst Japan 26:597–603. https://doi.org/10.2355/isijinternational1966.26.597

  104. Oh SM, Lee JY (1988) Effects of matrix structure on mechanical properties of carbon/carbon composites. Carbon N Y 26:769–776. https://doi.org/10.1016/0008-6223(88)90098-X

    Article  CAS  Google Scholar 

  105. Li F, Ruan P, Li T, Xu G, Lu D, Pan H (2011) Application of carbon-carbon composite for load-carrying cylinder in lunar optical telescope. In: Zarnecki JC, Nardell CA, Shu R, Yang J, Zhang Y (eds) International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications. Beijing, China, p 81961G. https://doi.org/10.1117/12.900738

  106. Bundy FP, Bassett WA, Weathers MS, Hemley RJ, Mao HK, Goncharov AF (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon N Y 34:141–153. https://doi.org/10.1016/0008-6223(96)00170-4

    Article  CAS  Google Scholar 

  107. Bobrowski A, Drożyński D, Grabowska B, Kaczmarska K, Kurleto-Kozioł Ż, Brzeziński M (2018) Studies on thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20–500 °C. China Foundry 15:145–151. https://doi.org/10.1007/s41230-018-7035-4

    Article  Google Scholar 

  108. Jiang H, Wang J, Wu S, Yuan Z, Hu Z, Wu R, Liu Q (2012) The pyrolysis mechanism of phenol formaldehyde resin. Polym Degrad Stab 97:1527–1533. https://doi.org/10.1016/j.polymdegradstab.2012.04.016

    Article  CAS  Google Scholar 

  109. Chen Y, Chen Z, Xiao S, Liu H (2008) A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochim Acta 476:39–43. https://doi.org/10.1016/j.tca.2008.04.013

    Article  CAS  Google Scholar 

  110. Chang C, Tackett JR (1991) Characterization of phenolic resins with thermogravimetry-mass spectrometry. Thermochim Acta 192:181–190. https://doi.org/10.1016/0040-6031(91)87160-X

    Article  CAS  Google Scholar 

  111. Šupová M, Svítilová J, Chlup Z, Černý M, Weishauptová Z, Suchý T, MacHovič V, Sucharda Z, Žaloudková M (2012) Relation between mechanical properties and pyrolysis temperature of phenol formaldehyde resin for gas separation membranes. Ceram Silikaty 56:40–49

    Google Scholar 

  112. Ouchi K (1966) Infra-red study of structural changes during the pyrolysis of a phenol-formaldehyde resin. Carbon N Y 4:59–66. https://doi.org/10.1016/0008-6223(66)90009-1

    Article  CAS  Google Scholar 

  113. Heydari M, Rahman M, Gupta R (2015) Kinetic study and thermal decomposition behavior of lignite coal. Int J Chem Eng 2015:1–9. https://doi.org/10.1155/2015/481739

    Article  CAS  Google Scholar 

  114. Wang J, Li Y, Jin Y, Wang Z (2014) Kinetics and mechanism of thermal decomposition of polyepoxyphenylsilsesquioxane/epoxy resin systems from isothermal measurement. J Macromol Sci Part A Pure Appl Chem 51(3):249–253. https://doi.org/10.1080/10601325.2014.871956

    Article  CAS  Google Scholar 

  115. Hu X, Zhao Y, Cheng W (2018) Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature. Polym Compos. https://doi.org/10.1002/pc.23060

    Article  Google Scholar 

  116. Lewis I (1982) Chemistry of carbonization Xl. Carbon 20(2):125

    Article  Google Scholar 

  117. Brazier DW, Schwartz NV (1978) The effect of heating rate on the thermal degradation of polybutadiene. J Appl Polym Sci 22:113–124

    Article  CAS  Google Scholar 

  118. Bouajila J, Raffin G, Alamercery S, Waton H, Sanglar C, Grenier-Loustalot MF (2003) Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polym Polym Compos 11:345–357. https://doi.org/10.1177/096739110301100501

    Article  CAS  Google Scholar 

  119. Roy AK, Anderson DP (1996) Effect of carbonization heating rate, microstructure, and lay-up on the interlaminar tensile properties of a two-dimensional carbon-carbon composite. J Eng Mater Technol Trans ASME 118:241–246. https://doi.org/10.1115/1.2804895

    Article  CAS  Google Scholar 

  120. Inagaki M, Ibuki T, Kobayashi K, Sakai M (1990) Interaction between pitch and phenol resin during pressure carbonization. Carbon N Y 28:559–564. https://doi.org/10.1016/0008-6223(90)90053-2

    Article  CAS  Google Scholar 

  121. Inagaki M, Park KC, Endo M (2010) Carbonization under pressure. Xinxing Tan Cailiao/New Carbon Mater 25:409–420. https://doi.org/10.1016/S1872-5805(09)60042-1

    Article  CAS  Google Scholar 

  122. Gonikberg MG, Fainshtein IZ (1965) Effect of pressure on the thermal decomposition of methyltriphenoxyphosphonium iodide. Bull Acad Sci USSR Div Chem Sci 14:1428–1430. https://doi.org/10.1007/BF00846206

    Article  Google Scholar 

  123. Norikiyo T, Aoki T, Ogasawara T, Ogawa T, Hatta H (2007) Influences of heat treatment temperatures on tensile behavior of UD-C/C composites. In: 16th International Conference on Composite Materials. Kyoto, Japan, pp 1–7

  124. Ma TF, Wang XF, Yang FL (2014) Effect of carbonization temperature on the elastic modulus of resin carbon. Adv Mater Res 1079–1080:83–87

    Google Scholar 

  125. Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S (2017) Kinetic analysis of the thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J Anal Appl Pyrolysis 126:14–21. https://doi.org/10.1016/j.jaap.2017.07.002

    Article  CAS  Google Scholar 

  126. Flynn J, Florin R (1985) Pyrolysis and GC in polymer analysis. Marcel Dekker, Washington D.C.

    Google Scholar 

  127. Silva MCD, Conceição MM, Trindade MFS, Souza AG, Pinheiro CD, Machado JC, Filho PFA (2004) Kinetic and thermodynamic parameters of the thermal decomposition of zinc(II) dialkyldithiocarbamate complexes. J Therm Anal Calorim 75:583–590. https://doi.org/10.1023/B:JTAN.0000027149.08673.8e

    Article  CAS  Google Scholar 

  128. Ebrahimi-Kahrizsangi R, Abbasi MH (2008) Evaluation of reliability of coats-redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China (English Ed) 18:217–221. https://doi.org/10.1016/S1003-6326(08)60039-4

    Article  CAS  Google Scholar 

  129. Mallakpour S, Taghavi M (2009) Kinetics and thermal degradation study of optically active and thermally stable aromatic polyamides with flame-retardancy properties. Polym J 41:308–318. https://doi.org/10.1295/polymj.PJ2008246

    Article  CAS  Google Scholar 

  130. Nam J-D, Seferis JC (1992) Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions. J Polym Sci Part B Polym Phys 30:455–463. https://doi.org/10.1002/polb.1992.090300505

    Article  CAS  Google Scholar 

  131. Wang CJ (1996) The effects of resin thermal degradation on thermostructural response of carbon-phenolic composites and the manufacturing process of carbon-carbon composites. J Reinf Plast Compos 15:1011–1026. https://doi.org/10.1177/073168449601501003

    Article  CAS  Google Scholar 

  132. Chippendale RD, Golosnoy IO, Lewin PL (2014) Numerical modelling of thermal decomposition processes and associated damage in carbon fibre composites. J Phys D Appl Phys 47(38):385301. https://doi.org/10.1088/0022-3727/47/38/385301

    Article  CAS  Google Scholar 

  133. Chippendale RD (2013) Modelling of the thermal chemical damage caused to carbon fibre composites. University of Southampton

  134. Nguyen YT, Pence TJ, Wichman IS (2019) Crack formation during solid pyrolysis: evolution, pattern formation and statistical behavior. Proc R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rspa.2019.0211

    Article  Google Scholar 

  135. Fan XJ, Zhang SY (1995) Void behaviour due to internal pressure induced by temperature rise. J Mater Sci 30:3483–3486. https://doi.org/10.1007/BF00349899

    Article  CAS  Google Scholar 

  136. Kobayashi K, Sugawara S, Toyoda S, Honda H (1968) An X-ray diffraction study of phenol-formaldehyde resin carbons. Carbon N Y 6:359–363. https://doi.org/10.1016/0008-6223(68)90030-4

    Article  CAS  Google Scholar 

  137. Cheng T, Zhang R, Pei Y, He R, Fang D, Yang Y (2019) Flexural properties of carbon-carbon composites at temperatures up to 2600 °C. Mater Res Express. https://doi.org/10.1088/2053-1591/ab23c9

    Article  Google Scholar 

  138. Tzeng SS, Chr YG (2002) Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis. Mater Chem Phys 73:162–169. https://doi.org/10.1016/S0254-0584(01)00358-3

    Article  CAS  Google Scholar 

  139. Sayah A, Habelhames F, Bahloul A, Nessark B, Bonnassieux Y, Tendelier D, El Jouad M (2018) Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J Electroanal Chem 818:26–34. https://doi.org/10.1016/j.jelechem.2018.04.016

    Article  CAS  Google Scholar 

  140. Vyazovkin S (2020) Kinetic effects of pressure on decomposition of solids. Int Rev Phys Chem 39:35–66. https://doi.org/10.1080/0144235X.2019.1691319

    Article  CAS  Google Scholar 

  141. Murata K, Sato K, Sakata Y (2004) Effect of pressure on thermal degradation of polyethylene. J Anal Appl Pyrolysis 71:569–589. https://doi.org/10.1016/j.jaap.2003.08.010

    Article  CAS  Google Scholar 

  142. Hosomura T, Okamoto H (1991) Effects of pressure carbonization in the CC composite process. Mater Sci Eng A 143:223–229. https://doi.org/10.1016/0921-5093(91)90741-5

    Article  Google Scholar 

  143. Oh IS, Kim JI, Kim JK, Kim KW, Joo HJ (1999) Effects of pressure on the pore formation of carbon/carbon composites during carbonization. J Mater Sci 34:4585–4595. https://doi.org/10.1023/A:1004674213884

    Article  CAS  Google Scholar 

  144. Schueller OJA, Brittain ST, Marzolin C, Whitesides GM (1997) Fabrication and characterization of glassy carbon MEMS. Chem Mater 9:1399–1406. https://doi.org/10.1021/cm960639v

    Article  CAS  Google Scholar 

  145. Nam J-d, Seferis JC (1991) A composite methodology for multistage degradation of polymers. J Polym Sci Part B Polym Phys 29:601–608. https://doi.org/10.1002/polb.1991.090290509

    Article  CAS  Google Scholar 

  146. Sharma R, Deshpande VV, Bhagat AR, Mahajan P, Mittal RK (2013) X-ray tomographical observations of cracks and voids in 3D carbon/carbon composites. Carbon N Y 60:335–345. https://doi.org/10.1016/j.carbon.2013.04.046

    Article  CAS  Google Scholar 

  147. Gao F, Patrick JW, Walker A (1993) The characterisation of cracks and voids in two-dimensional carbon-carbon composites. Carbon N Y 31:103–108. https://doi.org/10.1016/0008-6223(93)90162-4

    Article  CAS  Google Scholar 

  148. Kumar R, Ravikumar NL, Pandya C, Kar KK, Dasgupta K (2019) Prediction of material properties by 2-D numerical simulation of carbonization process of carbon–carbon composites. SN Appl Sci 1:1–13. https://doi.org/10.1007/s42452-019-0614-1

    Article  CAS  Google Scholar 

  149. Meng Q, Zhao Y, Kang Z, Wang Y, Gao L, Zhang Y (2020) Evolution of micron-scale pore structure and connectivity of lignite during pyrolysis. Adv Mater Sci Eng 2020:1–10. https://doi.org/10.1155/2020/9186542

    Article  CAS  Google Scholar 

  150. Rodríguez-Mirasol J, Thrower PA, Radovic LR (1995) On the oxidation resistance of carbon-carbon composites: importance of fiber structure for composite reactivity. Carbon N Y 33:545–554. https://doi.org/10.1016/0008-6223(94)00180-8

    Article  Google Scholar 

  151. Beyssac O, Rouzaud JN, Goffé B, Brunet F, Chopin C (2002) Graphitization in a high-pressure, low-temperature metamorphic gradient: a raman microspectroscopy and HRTEM study. Contrib Mineral Petrol 143:19–31. https://doi.org/10.1007/s00410-001-0324-7

    Article  CAS  Google Scholar 

  152. Kurolenskin EI, Lopatto YS, Khakimova DK, Virgul’ev YS (1982) Structure of glassy carbon. Solid Fuel Chem 16:105–112. https://doi.org/10.1016/0008-6223(72)90444-7

    Article  Google Scholar 

  153. Emmerich FG (1995) Evolution with heat treatment of crystallinity in carbons. Carbon N Y 33:1709–1715. https://doi.org/10.1016/0008-6223(95)00127-8

    Article  CAS  Google Scholar 

  154. Honda H, Kobayashi K, Sugawara S (1968) X-ray characteristics of non-graphitizing-type carbon. Carbon N Y 6:517–523. https://doi.org/10.1016/0008-6223(68)90091-2

    Article  CAS  Google Scholar 

  155. Schmidt DL (1996) Carbon-carbon composites (CCC) - a historical perspective. 579. https://apps.dtic.mil/sti/citations/ADA325314

  156. Fitzer E, Manocha LM (1998) Carbon reinforcements and carbon/carbon composites. Springer, Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58745-0

    Book  Google Scholar 

  157. Zaldivar RJ, Rellick G (1992) Some observations on stress graphitization in carbon-carbon composites. Sp Missle Syst Cent 30(4):711–714

    CAS  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-18-2-0299. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. Further support was provided to Faheem Muhammed by the Army Research Laboratory through the Science, Mathematics, and Research for Transformation (SMART) Scholarship. Special thanks to the reviewers, as the quality of this article was enhanced through applying their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faheem Muhammed or John W. Gillespie Jr..

Ethics declarations

Conflict of interest

This manuscript contains no conflicts of interest that could potentially influence or bias this submission.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammed, F., Lavaggi, T., Advani, S. et al. Influence of material and process parameters on microstructure evolution during the fabrication of carbon–carbon composites: a review. J Mater Sci 56, 17877–17914 (2021). https://doi.org/10.1007/s10853-021-06401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06401-3

Navigation