Skip to main content
Log in

Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, different formulations of a room-temperature silicone composite backing material (SCBM) composed of polydimethylsiloxane (PDMS), fumed silica and corn starch were investigated using different characterization techniques, i.e., differential scanning calorimetry, thermogravimetry analysis, X-ray diffraction (XRD) and small-angle X-ray scattering, as a function of controlled relative humidity. At ambient relative humidities in the range of about 20–80%, the equilibrium water content in the SCBM ranges from approximately 4–10%, which is predominantly absorbed by the corn starch. This amount of water content has been shown to have minimal effect on thermal transition temperatures (melting and glass transition) of the SCBMs. The enthalpy of melting increases with increasing relative humidity, which reflects the heterogeneous semicrystalline structure of starch granules and the role of moisture in facilitating the formation of amylopectin double helices mainly in the imperfect crystalline regions. The thermal degradation of SCBM exhibits three major mass loss steps that correspond to dehydration, decomposition of corn starch and decomposition of PDMS. The XRD patterns reveal a characteristic diffuse peak for amorphous PDMS and an A-type crystallinity for the corn starch. The XRD results show no observable changes in the crystal type and crystallinity as a function of moisture content. Results from this work help clarify the fundamental structure–property relationships in SCBMs, which are important for future development of documentary standards, especially the handling and storage specifications of next-generation ballistic witness materials for body armor testing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. National Institute of Standards and Technology, Ballistic Resistance of Body Armor, NIJ Standard-0101.06, National Institute of Justice (2008).

  2. ASTM E3004-20a (2020) Standard Specification for Preparation and Verification of Clay Blocks Used in Ballistic-Resistance Testing of Torso Body Armor. ASTM International, West Conshohocken, PA. www.astm.org

  3. US Department of Defense Inspector General, DoD Testing Requirements for Body Armor, Report No. D-2009–047 (2009). Arlington, VA

  4. National Institute of Justice, Selection and Application Guide to Ballistic-Resistant Body Armor For Law Enforcement, Corrections and Public Safety: NIJ Selection and Application Guide-0101.06 (2014)

  5. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification is not intended to imply recommendation or endorsement by the authors or the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose

  6. ASTM E3004-15 (2015) Standard Specification for Preparation and Verification of Clay Blocks Used in Ballistic-Resistance Testing of Torso Body Armor. ASTM International, West Conshohocken, PA. www.astm.org

  7. Tao R, Rice KD, Forster AM (2017) Rheology of ballistic clay: the effect of temperature and shear history. Paper presented at the Society of Plastics Engineers’ Annual Technical Conference, Anaheim, CA, May 8–10

  8. Seppala JE, Heo Y, Stutzman PE, Sieber JR, Snyder CR, Rice KD, Holmes GA (2015) Characterization of clay composite ballistic witness materials. J Mater Sci 50(21):7048–7057. https://doi.org/10.1007/s10853-015-9259-7

    Article  CAS  Google Scholar 

  9. Lehowicz LG, Bass CR, Budinger TF, Denn MM, Fahrenholtz WG, Ronald D. Fricker J, Gupta YM, Killinger DK, Markov VB, Mcguffin-Cawley JD, Prather RN, Wiederhorn S, Wilson AG (2012) Testing of Body Armor Materials: Phase III. The National Academies Press, Washington, DC. https://doi.org/10.17226/13390

  10. Lehowicz LG, Denn MM, Fahrenholtz WG, Ronald D. Fricker J, Mcguffin-Cawley JD, Smith HI, Walker KL, Wilson AG (2010) Testing of body armor materials for use by the U.S. Army—Phase II: Letter Report. The National Academies Press, Washington, DC. https://doi.org/10.17226/12885

  11. Edwards TD, Bain ED, Cole ST, Freeney RM, Halls VA, Ivancik J, Lenhart JL, Napadensky E, Yu JH, Zheng JQ, Mrozek RA (2018) Mechanical properties of silicone based composites as a temperature insensitive ballistic backing material for quantifying back face deformation. Forensic Sci Int 285:1–12. https://doi.org/10.1016/j.forsciint.2018.01.014

    Article  CAS  Google Scholar 

  12. Freeney R, Mrozek R (2016) The development of a room temperature clay backing material for the ballistic testing of body armor. Paper presented at the Personal Armour Systems Symposium, Amsterdam, The Netherlands, September 19–23

  13. Tao R, Forster AM, Rice KD, Mrozek RA, Cole ST, Freeney RM (2018) Thermo-rheological characterization on next-generation backing materials for body armour testing. Paper presented at the Personal Armour Systems Symposium, Washington, DC, October 1–5

  14. Tao R, Rice KD, Djakeu AS, Mrozek RA, Cole ST, Freeney RM, Forster AM (2019) Rheological characterization of next-generation ballistic witness materials for body armor testing. Polymers 11(3):447. https://doi.org/10.3390/polym11030447

    Article  CAS  Google Scholar 

  15. Jouppila K, Roos YH (1997) The physical state of amorphous corn starch and its impact on crystallization. Carbohydr Polym 32(2):95–104. https://doi.org/10.1016/S0144-8617(96)00175-0

    Article  CAS  Google Scholar 

  16. Şerbescu A, Saalwächter K (2009) Particle-induced network formation in linear PDMS filled with silica. Polymer 50(23):5434–5442. https://doi.org/10.1016/j.polymer.2009.09.063

    Article  CAS  Google Scholar 

  17. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Stärke 62(8):389–420. https://doi.org/10.1002/star.201000013

    Article  CAS  Google Scholar 

  18. Biliaderis CG, Page CM, Maurice TJ, Juliano BO (1986) Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J Agric Food Chem 34(1):6–14. https://doi.org/10.1021/jf00067a002

    Article  CAS  Google Scholar 

  19. Johnson KA, Mauer LJ (2019) Effects of controlled relative humidity storage on moisture sorption and amylopectin retrogradation in gelatinized starch lyophiles. J Food Sci 84(3):507–523. https://doi.org/10.1111/1750-3841.14472

    Article  CAS  Google Scholar 

  20. Shogren RL (1992) Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohydr Polym 19(2):83–90. https://doi.org/10.1016/0144-8617(92)90117-9

    Article  CAS  Google Scholar 

  21. Zavareze EdR, Dias ARG (2011) Impact of heat-moisture treatment and annealing in starches: a review. Carbohydr Polym 83(2):317–328. https://doi.org/10.1016/j.carbpol.2010.08.064

    Article  CAS  Google Scholar 

  22. Nalin T, Sperb-Ludwig F, Venema K, Derks TGJ, Schwartz IVD (2015) Determination of amylose/amylopectin ratio of starches. J Inherit Metab Dis 38(5):985–986. https://doi.org/10.1007/s10545-015-9850-8

    Article  Google Scholar 

  23. Gunaratne A, Hoover R (2002) Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym 49(4):425–437. https://doi.org/10.1016/S0144-8617(01)00354-X

    Article  CAS  Google Scholar 

  24. Hoover R, Manuel H (1996) The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J Cereal Sci 23(2):153–162. https://doi.org/10.1006/jcrs.1996.0015

    Article  CAS  Google Scholar 

  25. Engelbrecht-Wiggans A, Burni F, Krishnamurthy A, Forster AL (2020) Tensile testing of aged flexible unidirectional composite laminates for body armor. J Mater Sci 55(3):1035–1048. https://doi.org/10.1007/s10853-019-04063-w

    Article  CAS  Google Scholar 

  26. Ilavsky J, Zhang F, Andrews RN, Kuzmenko I, Jemian PR, Levine LE, Allen AJ (2018) Development of combined microstructure and structure characterization facility for in situ and operando studies at the Advanced Photon Source. J Appl Cryst 51(3):867–882. https://doi.org/10.1107/S160057671800643X

    Article  CAS  Google Scholar 

  27. Petrović ZS, Milić J, Zhang F, Ilavsky J (2017) Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121:26–37. https://doi.org/10.1016/j.polymer.2017.05.072

    Article  CAS  Google Scholar 

  28. Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng 80(2):562–567. https://doi.org/10.1016/j.jfoodeng.2006.04.063

    Article  Google Scholar 

  29. Schmidt SJ, Fontana AJ Jr (2007) Appendix E: water activity values of select food ingredients and products. In: Barbosa‐Cánovas GV, Fontana AJ, Schmidt SJ, Labuza TP (eds) Water activity in foods: fundamentals and applications. Blackwell Publishing, pp 407–420. https://doi.org/10.1002/9780470376454.app5

  30. Zhong Z, Sun XS (2005) Thermal characterization and phase behavior of cornstarch studied by differential scanning calorimetry. J Food Eng 69(4):453–459. https://doi.org/10.1016/j.jfoodeng.2004.07.023

    Article  Google Scholar 

  31. Monnier X, Maigret J-E, Lourdin D, Saiter A (2017) Glass transition of anhydrous starch by fast scanning calorimetry. Carbohydr Polym 173:77–83. https://doi.org/10.1016/j.carbpol.2017.05.042

    Article  CAS  Google Scholar 

  32. Liu X, Yu L, Liu H, Chen L, Li L (2009) Thermal decomposition of corn starch with different amylose/amylopectin ratios in open and sealed systems. Cereal Chem 86(4):383–385. https://doi.org/10.1094/CCHEM-86-4-0383

    Article  CAS  Google Scholar 

  33. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stab 93(1):260–262. https://doi.org/10.1016/j.polymdegradstab.2007.09.004

    Article  CAS  Google Scholar 

  34. Cooke D, Gidley MJ (1992) Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohydr Res 227:103–112. https://doi.org/10.1016/0008-6215(92)85063-6

    Article  CAS  Google Scholar 

  35. Morris VJ (1990) Starch gelation and retrogradation. Trends Food Sci Technol 1:2–6. https://doi.org/10.1016/0924-2244(90)90002-G

    Article  CAS  Google Scholar 

  36. Jacobs H, Delcour JA (1998) Hydrothermal modifications of granular starch, with retention of the granular structure: a review. J Agric Food Chem 46(8):2895–2905. https://doi.org/10.1021/jf980169k

    Article  CAS  Google Scholar 

  37. Biliaderis CG (1991) The structure and interactions of starch with food constituents. Can J Physiol Pharmacol 69(1):60–78. https://doi.org/10.1139/y91-011

    Article  CAS  Google Scholar 

  38. French D (1984) Organization of starch granules. In: Whistler RL, Bemiller JN, Paschall EF (eds) Starch: chemistry and technology, 2nd edn. Academic Press, San Diego, pp 183–247

    Chapter  Google Scholar 

  39. Liu H, Yu L, Xie F, Chen L (2006) Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydr Polym 65(3):357–363. https://doi.org/10.1016/j.carbpol.2006.01.026

    Article  CAS  Google Scholar 

  40. Russell PL (1987) Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci 6(2):133–145. https://doi.org/10.1016/S0733-5210(87)80050-4

    Article  CAS  Google Scholar 

  41. Aggarwal P, Dollimore D (1998) A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta 319(1):17–25. https://doi.org/10.1016/S0040-6031(98)00355-4

    Article  CAS  Google Scholar 

  42. Aggarwal P, Dollimore D, Heon K (1997) Comparative thermal analysis study of two biopolymers, starch and cellulose. J Therm Anal Calorim 50(1–2):7–17. https://doi.org/10.1007/BF01979545

    Article  CAS  Google Scholar 

  43. Thomas TH, Kendrick TC (1969) Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres. J Polym Sci A Polym Phys 7(3):537–549. https://doi.org/10.1002/pol.1969.160070308

    Article  CAS  Google Scholar 

  44. Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG (1998) The thermogravimetric analysis of some polysiloxanes. Polym Degrad Stab 61(1):87–93. https://doi.org/10.1016/S0141-3910(97)00135-3

    Article  CAS  Google Scholar 

  45. Camino G, Lomakin SM, Lazzari M (2001) Polydimethylsiloxane thermal degradation Part 1 Kinetic aspects. Polymer 42(6):2395–2402. https://doi.org/10.1016/S0032-3861(00)00652-2

    Article  CAS  Google Scholar 

  46. Zhang D, Shi Y, Liu Y, Huang G (2014) Influences of polyhedral oligomeric silsesquioxanes (POSSs) containing different functional groups on crystallization and melting behaviors of POSS/polydimethylsiloxane rubber composites. RSC Adv 4(78):41364–41370. https://doi.org/10.1039/C4RA07242A

    Article  CAS  Google Scholar 

  47. Zobel HF (1988) Starch crystal transformations and their industrial importance. Starch/Stärke 40(1):1–7. https://doi.org/10.1002/star.19880400102

    Article  CAS  Google Scholar 

  48. Gernat C, Radosta S, Anger H, Damaschun G (1993) Crystalline parts of three different conformations detected in native and enzymatically degraded starches. Starch/Stärke 45(9):309–314. https://doi.org/10.1002/star.19930450905

    Article  CAS  Google Scholar 

  49. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36(4):277–284. https://doi.org/10.1016/S0144-8617(98)00007-1

    Article  CAS  Google Scholar 

  50. Godet MC, Bizot H, Buléon A (1995) Crystallization of amylose—Fatty acid complexes prepared with different amylose chain lengths. Carbohydr Polym 27(1):47–52. https://doi.org/10.1016/0144-8617(95)00034-5

    Article  CAS  Google Scholar 

  51. Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89(9):761–768. https://doi.org/10.1002/bip.21005

    Article  CAS  Google Scholar 

  52. Franco CML, Ciacco CF, Tavares DQ (1995) Effect of the heat-moisture treatment on the enzymatic susceptibility of corn starch granules. Starch/Stärke 47(6):223–228. https://doi.org/10.1002/star.19950470607

    Article  CAS  Google Scholar 

  53. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517. https://doi.org/10.1021/ma070356w

    Article  CAS  Google Scholar 

  54. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Cryst 28(6):717–728. https://doi.org/10.1107/S0021889895005292

    Article  CAS  Google Scholar 

  55. Dollase T, Wilhelm M, Spiess HW, Yagen Y, Yerushalmi-Rozen R, Gottlieb M (2003) Effect of interfaces on the crystallization behavior of PDMS. Interface Sci 11(2):199–209. https://doi.org/10.1023/A:1022174712707

    Article  CAS  Google Scholar 

  56. Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Effect of reinforcing fillers on the rheology of polymer melts. J Rheol 36(6):1165–1182. https://doi.org/10.1122/1.550306

    Article  CAS  Google Scholar 

  57. Cohen-Addad JP, Roby C, Sauviat M (1985) Characterization of chain binding to filler in silicone-silica systems. Polymer 26(8):1231–1233. https://doi.org/10.1016/0032-3861(85)90258-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the US Department of Commerce, National Institute of Standards and Technology (Award No. 70NANB20H145). The authors thank Dr. Ajay Krishnamurthy for performing DSC calibrations and Dr. Amy Engelbrecht-Wiggans for the assistance with the conditioning chamber. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. This work is an official contribution of NIST, a US government agency and not subject to copyright in the USA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ran Tao or Aaron M. Forster.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The full description of the procedures used in this paper requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by the authors or NIST, or are recommended by NIST, or that they are necessarily the best materials, instruments, software or suppliers for the purposes described.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Zhang, F., Nguyen, H.G. et al. Temperature-insensitive silicone composites as ballistic witness materials: the impact of water content on the thermophysical properties. J Mater Sci 56, 16362–16375 (2021). https://doi.org/10.1007/s10853-021-06334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06334-x

Navigation