Skip to main content

Advertisement

Log in

Preparation of hierarchical porous carbons from a coal tar pitch modified by fluid catalytic cracking oil for a high-performance supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A template-free strategy was designed to prepare hierarchical porous carbons (HPCs) using fluid catalytic cracking oil modified a coal tar pitch (CTP). The resulting HPCs possess large specific surface areas, reasonable pore size distributions, and wrinkled structures, which could improve the overall electrochemical performance. They exhibit a specific capacitance value of 329 F g−1 at 0.5 A g−1 and still maintain 220 F g−1 at 20 A g−1, manifesting the remarkable rate capability. Additionally, the assembled symmetrical supercapacitor delivers a highest energy density of 23.6 Wh kg−1 at a power density of 500 W kg−1 and outstanding cycle stability of 92.8% capacitance retention after 10000 cycles. This work paves a new way to fabricate advanced carbon materials from low-cost CTP and provides a promising approach for value-added utilization of CTP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ASCs:

Alkyl side chains

ARs:

Aromatic rings

BET:

Brunauer–Emmett–Teller

CTP:

Coal tar pitch

CBMs:

Carbon-based materials

CAs:

Condensed arenes

CTR:

Charge-transfer resistance

CV:

Cyclic voltammetry

DFT:

Density functional theory

d 002 :

Interlayer distance

ECP:

Electrochemical performance

E :

Specific energy density

ESR:

Equivalent series resistance

FCCO:

Fluid catalytic cracking oil

FTIR:

Fourier transform infrared

GN:

Graphite nitrogen

GCD:

Galvanostatic charge–discharge

HPCs:

Hierarchical porous carbons

Lc :

Crystal packing height

PBCMs:

Pitch-based carbon materials

PCs:

Porous carbons

PSDs:

Pore size distributions

P :

Specific power density

PNI :

Pyridinic nitrogen

PNII :

Pyrrolic nitrogen

SSAs:

Specific surface areas

SCs:

Specific capacitances

SR:

Scanning rate

TPV:

Total pore volume

XRPES:

X-ray photoelectron spectrum

XRD:

X-ray diffraction

References

  1. Wang ZH, Tammela P, Strømme M, Nyholm L (2017) Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 7:1700130

    Article  Google Scholar 

  2. Wu Z, Li L, Yan JM, Zhang XB (2017) Materials design and system construction for conventional and new-concept supercapacitors. Adv Sci 4:1600382

    Article  Google Scholar 

  3. Saikia BK, Benoy SM, Bora M, Tamuly J, Pandey M, Bhattacharya D (2020) A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 282:118796

    Article  CAS  Google Scholar 

  4. Yang YK, Niu H, Qin FF, Guo ZY, Wang JS, Ni GS, Zuo PP, Qu SJ, Shen WZ (2020) MnO2 doped carbon nanosheets prepared from coal tar pitch for advanced asymmetric supercapacitor. Electrochim Acta 354:136667

    Article  CAS  Google Scholar 

  5. Zhou YT, Huang YN, Pang JB, Wang K (2019) Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J Power Sour 440:227149

    Article  CAS  Google Scholar 

  6. Yao YM, Zhang YQ, Li L, Wang SL, Dou SX, Liu X (2017) Fabrication of hierarchical porous carbon nanoflakes for high-performance supercapacitors. ACS Appl Mater Interf 9:34944–34953

    Article  CAS  Google Scholar 

  7. Wang DW, Wang YT, Liu HW, Xu W, Xu L (2018) Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chem Eng J 342:474–483

    Article  CAS  Google Scholar 

  8. Ni GS, Qin FF, Guo ZY, Wang JS, Shen WZ (2020) Nitrogen-doped asphaltene-based porous carbon fibers as supercapacitor electrode material with high specific capacitance. Electrochim Acta 330:135270

    Article  CAS  Google Scholar 

  9. Zhu DZ, Wang YW, Gan LH, Liu MX, Cheng K, Zhao YH, Deng XX, Sun DM (2015) Nitrogen-containing carbon microspheres for supercapacitor electrodes. Electrochim Acta 158:166–174

    Article  CAS  Google Scholar 

  10. Sun P, Yi H, Peng TQ, Jing YT, Wang RJ, Wang HW, Wang XF (2017) Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance. J Power Sour 341:27–35

    Article  CAS  Google Scholar 

  11. Peng ZW, Lin J, Ye RQ, Samuel ELG, Tour JM (2015) Flexible and stackable laser induced graphene supercapacitors. ACS Appl Mater Interf 7:3414–3419

    Article  CAS  Google Scholar 

  12. Boujibar O, Ghamouss F, Ghosh A, Achak O, Chafik T (2019) Activated carbon with exceptionally high surface area and tailored nanoporosity obtained from natural anthracite and its use in supercapacitors. J Power Sour 436:226882

    Article  CAS  Google Scholar 

  13. Cheng ZQ, Wang ZW, Wu PC, Wang YH, Fu JW (2020) Mass fabrication of oxygen and nitrogen co-doped 3D hierarchical porous carbon nanosheets by an explosion-assisted strategy for supercapacitor and dye adsorption application. Appl Surf Sci 529:147079

    Article  CAS  Google Scholar 

  14. Xie XY, He XJ, Shao XL, Dong SA, Xiao N, Qiu JS (2017) Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors. Electrochim Acta 246:634–642

    Article  CAS  Google Scholar 

  15. Qu WH, Guo YB, Shen WZ, Li WC (2016) Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors. J Phys Chem C 120:15105–15133

    Article  CAS  Google Scholar 

  16. Li ZT, Wu YJ, Zhao Y, Wang LX, Zhu HS, Qin LJ, Feng FF, Wang W, Wu YM (2011) Analysis of coal tar pitch and smoke extract components and their cytotoxicity on human bronchial epithelial cells. J Hazard Mater 186:1277–1282

    Article  CAS  Google Scholar 

  17. Niu ZS, Wang YG, Shen J, Niu YX, Liu G, Zhao W, Wei XY (2019) Insight into aromatic structures of a middle-temperature coal tar pitch by direct characterization and ruthenium ion-catalyzed oxidation. Fuel 241:1164–1171

    Article  CAS  Google Scholar 

  18. Petrova B, Budinova T, Petrov N, Yardim MF, Ekinci E, Razvigorova M (2005) Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch. Carbon 43:261–267

    Article  CAS  Google Scholar 

  19. Zhang GL, Guan TT, Cheng M, Wang YX, Xu NN, Qiao JL, Xu FF, Wang YZ, Wang JL, Li KX (2020) Harvesting honeycomb-like carbon nanosheets with tunable mesopores from mild-modified coal tar pitch for high-performance flexible all-solid-state supercapacitors. J Power Sour 448:227446

    Article  CAS  Google Scholar 

  20. He XJ, Li XJ, Ma H, Han JF, Zhang H, Yu C, Xiao N, Qiu JS (2017) ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J Power Sour 340:183–191

    Article  CAS  Google Scholar 

  21. Shao JQ, Ma FW, Wu G, Dai CC, Geng WD, Song SJ, Wan JF (2017) In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem Eng J 321:301–313

    Article  CAS  Google Scholar 

  22. Pan L, Wang YX, Hu H, Li XX, Liu JL, Guan L, Tian W, Wang XB, Li YP, Wu MB (2018) 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 134:345–353

    Article  CAS  Google Scholar 

  23. Li WD, Chen YL, Zhang LZ, Xu ZM, Sun XW, Zhao SQ, Xu CM (2016) Supercritical fluid extraction of FCC slurry oil: bulk property and molecular composition of narrow fraction. Energy Fuels 30:10064–10071

    Article  CAS  Google Scholar 

  24. Kuznetsov PN, Kamenskiy ES, Kuznetsova LI (2017) Comparative study of the properties of the coal extractive and commercial pitches. Energy Fuels 31:5402–5410

    Article  CAS  Google Scholar 

  25. Yang W, Deng BJ, Hou LQ, Tian JB, Tang YS, Wang S, Yang F, Li YF (2019) N, S codoped hierarchical porous graphene nanosheets derived from petroleum asphalt via in situ texturing strategy for high-performance supercapacitors. Ind Eng Chem Res 58:4487–4494

    Article  CAS  Google Scholar 

  26. Jia MY, Geng ST, Jiang QT, Xu CG, Zhang Y, Yin GC, Jia FC, Wang XM, Zhou T, Liu B (2021) A strategy to prepare activated carbon fiber membranes for flexible solid-state supercapacitor applications. J Mater Sci 56:3911–3924. https://doi.org/10.1007/s10853-020-05540-3

    Article  CAS  Google Scholar 

  27. Park MS, Cho S, Jeong E, Lee YS (2015) Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor. J Ind Eng Chem 23:27–32

    Article  CAS  Google Scholar 

  28. Wu Y, Cao JP, Zhao XY, Hao ZQ, Zhuang QQ, Zhu JS, Wang XY, Wei XY (2017) Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor. Electrochim Acta 252:397–407

    Article  CAS  Google Scholar 

  29. Kesavan T, Sasidharan M (2019) Palm spathe derived N-doped carbon nanosheets as a high performance electrode for Li-ion batteries and supercapacitors. ACS Sustainable Chem Eng 7:12160–12169

    CAS  Google Scholar 

  30. Meng XT, Jia S, Mo LL, Wei J, Wang FJ, Shao ZQ (2020) O/N-co-doped hierarchically porous carbon from carboxymethyl cellulose ammonium for highperformance supercapacitors. J Mater Sci 55:7417–7431. https://doi.org/10.1007/s10853-020-04515-8

    Article  CAS  Google Scholar 

  31. Han J, Chae JS, Kim JC, Roh KC (2020) Facile preparation of composite electrodes for supercapacitors by CNT entrapment into carbon matrix derived from pitch at a softening point. Carbon 163:402–407

    Article  CAS  Google Scholar 

  32. Wang DW, Xu L, Nai JW, Bai XX, Sun T (2019) Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Appl Surf Sci 473:1014–1023

    Article  CAS  Google Scholar 

  33. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 33:1760–1763

    Article  Google Scholar 

  34. Dong SA, He XJ, Zhang HF, Xie XY, Yu MX, Yu C, Xiao N, Qiu JS (2018) Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J Mater Chem A 6:15954–15960

    Article  CAS  Google Scholar 

  35. Zhang GL, Guan TT, Qiao JL, Wang JL, Li KX (2020) Free-radical-initiated strategy aiming for pitch-based dual-doped carbon nanosheets engaged into high-energy asymmetric supercapacitors. Energy Storage Mater 26:119–128

    Article  Google Scholar 

  36. Wang DW, Xu ZY, Lian Y, Ban CL, Zhang HH (2019) Nitrogen self-doped porous carbon with layered structure derived from porcine bladders for high-performance supercapacitors. J Colloid Interf Sci 542:400–409

    Article  CAS  Google Scholar 

  37. Guan TT, Li KX, Zhao JH, Zhao RJ, Zhang GL, Zhang DD, Wang JL (2017) Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. J Mater Chem A 5:15869–15878

    Article  CAS  Google Scholar 

  38. Hou JH, Cao CB, Idrees F, Ma XL (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahighcapacity battery anodes and supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  Google Scholar 

  39. Cheng CF, He SJ, Zhang CM, Du C, Chen W (2018) High-performance supercapacitor fabricated from 3D free-standing hierarchical carbon foam-supported two dimensional porous thin carbon nanosheets. Electrochim Acta 290:98–108

    Article  CAS  Google Scholar 

  40. Jiang JB, Sun YX, Chen YK, Hu XM, Zhu LY, Chen HT, Han S (2019) One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor. J Mater Sci 7:18901–18911. https://doi.org/10.1007/s10853-019-03746-8

    Article  CAS  Google Scholar 

  41. Wang KY, Zhang ZY, Sun QM, Wang P, Li YM (2020) Durian shell-derived N, O, P-doped activated porous carbon materials and their electrochemical performance in supercapacitor. J Mater Sci 55:10142–10154. https://doi.org/10.1007/s10853-020-04740-1

    Article  CAS  Google Scholar 

  42. Zhao J, Lai HW, Lyu ZY, Jiang YF, Xie K, Wang XZ, Wu Q, Yang LJ, Jin Z, Ma YW, Liu J, Hu Z (2015) Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv Mater 27:3541–3545

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was subsidized by the Key Project of Joint Fund for the Research on Coal-Based Low Carbon Technology from the National Natural Scientific Foundation of China (Grant 21776298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Yong Wei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1136 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, F., Wei, XY., Yan, WW. et al. Preparation of hierarchical porous carbons from a coal tar pitch modified by fluid catalytic cracking oil for a high-performance supercapacitor. J Mater Sci 56, 16591–16601 (2021). https://doi.org/10.1007/s10853-021-06317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06317-y

Navigation