Skip to main content
Log in

Direct synthesis of interconnected porous carbon nanosheet/nickel foam composite for high-performance supercapacitors by microwave-assisted heating

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Interconnected porous carbon nanosheet/nickel foam (PCNS/NF) composites were prepared directly from coal tar pitch on three-dimensional (3D) NF via microwave-assisted heating using Zn(CH3COO)2·2H2O as template precursor coupled with in-situ KOH activation. For comparison, the electrochemical properties of porous carbon nanosheets (PCNS) prepared at the absence of 3D NF were also investigated. The specific capacitance of PCNS/NF reaches 3000 mF cm−2 at 0.6 mA cm−2 in 6 M KOH electrolyte, obviously higher than that of PCNS (1288 mF cm−2). Meanwhile, the contact resistance of PCNS/NF (0.74 Ohm) is smaller than that of PCNS (1.69 Ohm), and the charge transfer resistance of PCNS/NF (0.21 Ohm) is also smaller than that of PCNS (0.34 Ohm). This work provides an efficient method for the fabrication of composite electrode materials from coal tar pitch by using NF as framework for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.H. Su, L.Y. Gong, Y. Zhao, A new strategy to enhance low-temperature capacitance: combination of two charge-storage mechanisms. Phys. Chem. Chem. Phys. 16, 681–684 (2014)

    Article  CAS  Google Scholar 

  2. Z.J. Li, W. Lu, C. Zhang, B.H. Li, F.Y. Kang, Q.H. Yang, A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11–14 (2015)

    Article  CAS  Google Scholar 

  3. G.X. Gao, H.B. Wu, S.J. Ding, L.M. Liu, X.W. Lou, Hierarchical NiCo2O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors. Small 11, 804–808 (2015)

    Article  CAS  Google Scholar 

  4. L.L. Jiang, L.Z. Sheng, C.L. Long, T. Wei, Z.J. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater 5, 1500771 (2015)

    Article  Google Scholar 

  5. M. Inagaki, J.S. Qiu, Q.G. Guo, Carbon foam: preparation and application. Carbon 87, 128–152 (2015)

    Article  CAS  Google Scholar 

  6. M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F.D. Monte et al., Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015)

    Article  CAS  Google Scholar 

  7. J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013)

    Article  CAS  Google Scholar 

  8. F. Gao, G.H. Shao, J.Y. Qu, S.Y. Lv, Y.Q. Li, M.B. Wu, Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim. Acta 155, 201–208 (2015)

    Article  CAS  Google Scholar 

  9. J. Yan, Q. Wang, C.P. Lin, T. Wei, Z.J. Fan, Interconnected frameworks with a sandwiched porous carbon layer/graphene hybrids for supercapacitors with high gravimetric and volumetric performances. Adv. Energy Mater. 13, 1294–1305 (2014)

    Google Scholar 

  10. X.J. He, H.B. Zhang, H. Zhang, X.J. Li, N. Xiao, J.S. Qiu, Direct synthesis of 3D hollow porous grapheme balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2, 19633–19640 (2014)

    Article  CAS  Google Scholar 

  11. L.H. Yin, Y. Chen, D. Li, X.Q. Zhao, B. Hou, B. K. Cao, 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Des. 111, 44–50 (2016)

    Article  CAS  Google Scholar 

  12. C.H. Bai, S.G. Sun, Y.Q. Xu, R.J. Yu, H.J. Li, Facile one-step synthesis of nanocomposite based on carbon nanotubes and nickel-aluminum layered double hydroxides with high cycling stability for supercapacitors. J. Colloid Interface Sci. 480, 57–62 (2016)

    Article  CAS  Google Scholar 

  13. Z. Jin, X.D. Yan, Y.H. Yu, G.J. Zhao, Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2, 11706–11715 (2014)

    Article  CAS  Google Scholar 

  14. C. Chen, D.F. Yu, G.Y. Zhao, B.S. Du, W. Tang, L. Sun et al., Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 27, 377–389 (2016)

    Article  CAS  Google Scholar 

  15. A.A. AbdelHamid, X.F. Yang, J.H. Yang, X.J. Chen, Y. Jackie, Ying, Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 26, 425–437 (2016)

    Article  CAS  Google Scholar 

  16. L.L. Jiang, L.Z. Sheng, C.L. Long, Z.J. Fan, Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015)

    Article  CAS  Google Scholar 

  17. J. Yang, C. Yu, X.M. Fan, C.T. Zhao, J.S. Qiu, Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors. Adv. Funct. Mater. 25, 2109–2116 (2015)

    Article  CAS  Google Scholar 

  18. X.M. Fan, C. Yu, Z. Ling, J. Yang, J.S. Qiu, Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance. ACS Appl. Mater. Interfaces 5, 2104–2110 (2013)

    Article  CAS  Google Scholar 

  19. W.X. Wang, S.C. Zhang, Y.L. Xing, S.B. Wang, Y.B. Ren, The closed-environment CVD method for preparing three-dimensional defect controllable graphene foam with a conductive interconnected network for lithium-ion battery applications. RSC Adv. 6, 75414–75419 (2016)

    Article  CAS  Google Scholar 

  20. P. Singh, K. Pala, Multiphase nanostructured PANI anchored@CVD grown MWCNT on rGO coated nickel foam for binder free supercapacitor electrode. Electrochim. Acta 242, 47–55 (2017)

    Article  CAS  Google Scholar 

  21. T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, W.Y. Zhou, Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 180, 998–1006 (2015)

    Article  CAS  Google Scholar 

  22. X.W. Mao, X.Q. Yang, J. Wu, W.D. Tian, G.C. Rutledge, T.A. Hatton, Microwave-assisted oxidation of electrospun turbostratic carbon nanofibers for tailoring energy storage capabilities. Chem. Mater. 27, 4574–4585 (2015)

    Article  CAS  Google Scholar 

  23. J.Q. Shao, F.W. Ma, G. Wu, W.D. Geng, S.J. Song, J.F. Wan et al., Facile preparation of 3D nanostructured O/N co-doped porous carbon constructed by interconnected carbon nanosheets for excellent-performance supercapacitors. Electrochim. Acta 222, 793–805 (2016)

    Article  CAS  Google Scholar 

  24. S. Hong, J. Yeo, W. Manorotkul, H.W. Kang, J. Lee, S. Han et al., Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale 5, 3698–3703 (2013)

    Article  CAS  Google Scholar 

  25. H.R. Wang, S.K. Yu, B. Xu, Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem. Commun. 52, 11512–11515 (2016)

    Article  CAS  Google Scholar 

  26. M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)

    Article  CAS  Google Scholar 

  27. X.J. He, N. Zhao, J.S. Qiu, N. Xiao, M.X. Yu, C. Yu, X.Y. Zhang, M.D. Zheng, Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. J. Mater. Chem. A 1, 9440–9448 (2013)

    Article  CAS  Google Scholar 

  28. X.J. He, R.C. Li, J.S. Qiu, K. Xie, P.H. Ling, Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50, 4911–4921 (2012)

    Article  CAS  Google Scholar 

  29. Z.D. Huang, H.Y. Zhang, Y.M. Chen, W.G. Wang, Y.T. Chen, Y.B. Zhong, Microwave-assisted synthesis of functionalized graphene on Ni foam as electrodes for supercapacitor application. Electrochim. Acta 108, 421–428 (2013)

    Article  CAS  Google Scholar 

  30. M.D. Stoller, R.S. Ruoff, Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3, 1294–1301 (2010)

    Article  CAS  Google Scholar 

  31. M. Oschatz, L. Borchardt, K. Pinkert, S. Thieme, M.R. Lohe, C. Hoffmann et al., Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material. Adv. Energy Mater. 4, 1300645 (2014)

    Article  Google Scholar 

  32. T. Xiao, B.J. Heng, X.Y. Hu, Y.W. Tang, In situ CVD synthesis of wrinkled scale-like carbon arrays on ZnO template and their use to supercapacitors. J. Phys. Chem. C 115, 25155–25159 (2011)

    Article  CAS  Google Scholar 

  33. X.B. Wang, W.P. Cai, Y.X. Lin, G.Z. Wang, C.H. Liang, Mass production of micro/nanostructured porous ZnO plates and their strong structurally enhanced and selective adsorption performance for environmental remediation. J. Mater. Chem. 20, 8582–8590 (2010)

    Article  CAS  Google Scholar 

  34. X.Y. Chen, C. Chen, Z.J. Zhang, D.H. Xie, Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. J. Mater. Chem. A 1, 10903–10911 (2013)

    Article  CAS  Google Scholar 

  35. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. App. Surf. Sci. 405, 329–336 (2017)

    Article  CAS  Google Scholar 

  36. R. Anton, On the reaction kinetics of Ni with amorphous carbon. Carbon 46, 656–662 (2008)

    Article  CAS  Google Scholar 

  37. V.H. Pham, J.H. Dickerson, Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: toward high volumetric capacitance. J. Phys. Chem. C 120, 5353–5360 (2016)

    Article  CAS  Google Scholar 

  38. C. Ye, L. Zhang, C.X. Guo, D.D. Li, Anthony Vasileff, H.H. Wang, S.Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 1702524 (2017)

  39. J.J. Xu, F. Xu, M. Qian, F.F. Xu, Z.L. Hong, F.Q. Huang, Conductive carbon nitride for excellent energy storage. Adv. Mater. 1701674 (2017)

  40. H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama et al., From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854–11857 (2011)

    Article  CAS  Google Scholar 

  41. X.M. Fan, C. Yu, J. Yang, Z. Ling, C. Hu, M.D. Zhang et al., A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 5, 1401761 (2015)

    Article  Google Scholar 

  42. S.S. He, L.B. Qiu, L. Wang, J.Y. Cao, S.L. Xie, Q. Gao et al., A three-dimensionally stretchable high performance supercapacitor. J. Mater. Chem. A 4, 14968–14973 (2016)

    Article  CAS  Google Scholar 

  43. J. Yan, Q. Wang, T. Wei, Z.J. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 157–164 (2014)

    Google Scholar 

  44. S. Han, D.Q. Wu, S. Li, F. Zhang, X.L. Feng, Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26, 849 (2014)

    Article  CAS  Google Scholar 

  45. S.F. Li, C. Yu, J. Yang, C.T. Zhao, X.M. Fan, H.W. Huang, X.T. Han, J.X. Wang, X.J. He, J.S. Qiu, Ultrathin nitrogen-enriched hybrid carbon nanosheets for supercapacitors with ultrahigh rate performance and high energy density. ChemElectroChem 7, 369–375 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Natural Scientific Foundation of China (Nos. U1361110 and 51272004), the Program for New Century Excellent Talents of the Education Ministry of China (No. NCET-13-0643), and the Provincial Innovative Group for Processing & Clean Utilization of Coal Resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3669 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Ji, X., Yu, M. et al. Direct synthesis of interconnected porous carbon nanosheet/nickel foam composite for high-performance supercapacitors by microwave-assisted heating. J Porous Mater 25, 923–933 (2018). https://doi.org/10.1007/s10934-017-0504-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0504-0

Keywords

Navigation