Skip to main content

Advertisement

Log in

PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Water splitting is considered as one of the recommendable techniques to realize clear and renewable hydrogen production. However, it suffers from lacking efficient and sustainable catalysts. Herein, a metal–organic framework/graphene oxide pyrolysis strategy was proposed to prepare nitrogen-doped porous carbon-stabilized alloys supported on reduced graphene oxide (PdCo@N–C/rGO) composite. When evaluated as an electrocatalyst for hydrogen evolution reaction (HER), the as-obtained PdCo@N–C/rGO shows an excellent performance in acidic media including positive onset potential close to that of commercial Pt/C (vs. SCE), low overpotential and Tafel slope, as well as long-term durability. Also, it delivers outstanding HER activities in alkaline and neutral conditions. The excellent performance could be mainly ascribed to their synergetic effect among alloy particles, nitrogen-doped porous carbon shell, and conductive rGO substrate.

Graphical abstract

A metal-organic framework engineered strategy was proposed to prepare N-doped porous carbon-stabilized PdCo alloys supported on reduced graphene oxide nanocomposite. Specifically, the as-obtained catalyst delivers excellent electrochemical activity for hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tang YJ, Gao MR, Liu CH et al (2015) Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angew Chem Int Ed 54:12928–12932. https://doi.org/10.1002/anie.201505691

    Article  CAS  Google Scholar 

  2. Chen A, Ostrom C (2015) Palladium-based nanomaterials: synthesis and electrochemical applications. Chem Rev 115:11999–12044. https://doi.org/10.1021/acs.chemrev.5b00324

    Article  CAS  Google Scholar 

  3. Su J, Yang Y, Xia G, Chen J, Jiang P, Chen Q (2017) Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nat Commun 8:14969. https://doi.org/10.1038/ncomms14969

    Article  Google Scholar 

  4. Zhang R, Wang X, Yu S et al (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29:1605502. https://doi.org/10.1002/adma.201605502

    Article  CAS  Google Scholar 

  5. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473. https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  6. Wang J, Cui W, Liu Q, Xing Z, Asiri AM, Sun X (2016) Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater 28:215–230. https://doi.org/10.1002/adma.201502696

    Article  CAS  Google Scholar 

  7. Jamesh MI (2016) Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sour 333:213–236. https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  8. McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB (2014) Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5:865–878. https://doi.org/10.1039/c3sc51711j

    Article  CAS  Google Scholar 

  9. Wang Y-J, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651. https://doi.org/10.1021/cr100060r

    Article  CAS  Google Scholar 

  10. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6:1600423. https://doi.org/10.1002/aenm.201600423

    Article  CAS  Google Scholar 

  11. Safizadeh F, Ghali E, Houlachi G (2015) Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - a Review. Int J Hydrogen Energy 40:256–274. https://doi.org/10.1016/j.ijhydene.2014.10.109

    Article  CAS  Google Scholar 

  12. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science. https://doi.org/10.1126/science.aad4998

    Article  Google Scholar 

  13. Hou Y, Pang H, Xin J, Ma H, Li B, Wang X, Tan L (2020) Multi-interface-modulated CoS2@MoS2 nanoarrays derived by predesigned germanomolybdate polymer showing ultrahighly electrocatalytic activity for hydrogen evolution reaction in wide pH range. Adv Mater Interfaces 7:2000780. https://doi.org/10.1002/admi.202000780

    Article  CAS  Google Scholar 

  14. Hu X, Zhang S, Sun J et al (2019) 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy 56:109–117. https://doi.org/10.1016/j.nanoen.2018.11.047

    Article  CAS  Google Scholar 

  15. Jiao Y, Hong W, Li P, Wang L, Chen G (2019) Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor. Appl Catal B 244:732–739. https://doi.org/10.1016/j.apcatb.2018.11.035

    Article  CAS  Google Scholar 

  16. Wang C-P, Kong L-J, Sun H et al (2019) Carbon layer coated Ni3S2/MoS2 nanohybrids as efficient bifunctional electrocatalysts for overall water splitting. Chem ElectroChem 6:5603–5609. https://doi.org/10.1002/celc.201901767

    Article  CAS  Google Scholar 

  17. Gao B, Du X, Ma Y et al (2020) 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Appl Catal B 263:117750. https://doi.org/10.1016/j.apcatb.2019.117750

    Article  CAS  Google Scholar 

  18. Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J (2020) Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater 32:1806326. https://doi.org/10.1002/adma.201806326

    Article  CAS  Google Scholar 

  19. Li J-S, Zhang S, Sha J-Q, Wang H, Liu MZ, Kong L-X, Liu G-D (2018) Confined molybdenum phosphide in P-doped porous carbon as efficient electrocatalysts for hydrogen evolution. ACS Appl Mater Interfaces 10:17140. https://doi.org/10.1021/acsami.8b01541

    Article  CAS  Google Scholar 

  20. Li J-S, Li J-Y, Wang X-R, Zhang S, Sha J-Q, Liu G-D (2018) Reduced graphene oxide-supported MoP@P-doped porous carbon nano-octahedrons as high-performance electrocatalysts for hydrogen evolution. ACS Sustain Chem Eng 6:10252. https://doi.org/10.1021/acssuschemeng.8b01575

    Article  CAS  Google Scholar 

  21. Hou Y, Pang H, Zhang L et al (2020) Highly dispersive bimetallic sulfides afforded by crystalline polyoxometalate-based coordination polymer precursors for efficient hydrogen evolution reaction. J Power Sour 446:227319. https://doi.org/10.1016/j.jpowsour.2019.227319

    Article  CAS  Google Scholar 

  22. Xia W, Qu C, Liang Z et al (2017) High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite. Nano Lett 17:2788–2795. https://doi.org/10.1021/acs.nanolett.6b05004

    Article  CAS  Google Scholar 

  23. Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Hydrogen evolution catalyzed by cobaloximes. ACC Chem Res 42:1995–2004. https://doi.org/10.1021/ar900253e

    Article  CAS  Google Scholar 

  24. Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266. https://doi.org/10.1002/anie.201007987

    Article  CAS  Google Scholar 

  25. Baffert C, Artero V, Fontecave M (2007) Cobaloximes as functional models for hydrogenases. 2. Proton electroreduction catalyzed by difluoroborylbis (dimethylglyoximato) cobalt (II) complexes in organic media. Inorg Chem 46:1817–1824. https://doi.org/10.1021/ic061625m

    Article  CAS  Google Scholar 

  26. Jacques P-A, Artero V, Pécaut J, Fontecave M (2009) Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages. PNAS 106:20627–20632. https://doi.org/10.1073/pnas.0907775106

    Article  Google Scholar 

  27. Fourmond V, Jacques P-A, Fontecave M, Artero V (2010) H2 evolution and molecular electrocatalysts: determination of overpotentials and effect of homoconjugation. Inorg Chem 49:10338–10347. https://doi.org/10.1021/ic101187v

    Article  CAS  Google Scholar 

  28. Zhang K, Xia X, Deng S et al (2019) N-doped CoO nanowire arrays as efficient electrocatalysts for oxygen evolution reaction. J Energy Chem 37:13–17. https://doi.org/10.1016/j.jechem.2018.11.013

    Article  Google Scholar 

  29. Lee C-P, Chen W-F, Billo T et al (2016) Beaded stream-like CoSe2 nanoneedle array for efficient hydrogen evolution electrocatalysis. J Mater Chem A 4:4553–4561. https://doi.org/10.1039/c6ta00464d

    Article  CAS  Google Scholar 

  30. Zheng Y-R, Gao M-R, Yu Z-Y, Gao Q, Gao H-L, Yu S-H (2015) Cobalt diselenide nanobelts grafted on carbon fiber felt: an efficient and robust 3D cathode for hydrogen production. Chem Sci 6:4594–4598. https://doi.org/10.1039/c5sc01335f

    Article  CAS  Google Scholar 

  31. Sun C, Dong Q, Yang J et al (2016) Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res 9:2234–2243. https://doi.org/10.1007/s12274-016-1110-1

    Article  CAS  Google Scholar 

  32. Xue N, Lin Z, Li P, Diao P, Zhang Q (2020) Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl Mater Interfaces 12:28288–28297. https://doi.org/10.1021/acsami.0c07088

    Article  CAS  Google Scholar 

  33. Wang H, Min S, Wang Q et al (2017) Nitrogen-doped nanoporous carbon membranes with Co/CoP janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 11:4358–4364. https://doi.org/10.1021/acsnano.7b01946

    Article  CAS  Google Scholar 

  34. Xu M, Han L, Han Y, Yu Y, Zhai J, Dong S (2015) Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J Mater Chem A 3:21471–21477. https://doi.org/10.1039/c5ta05018a

    Article  CAS  Google Scholar 

  35. Li J-S, Kong L-X, Wu Z, Zhang S, Yang X-Y, Sha J-Q, Liu G-D (2019) Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous polyhedrons for enhanced overall water splitting. Carbon 145:694. https://doi.org/10.1016/j.carbon.2018.12.032

    Article  CAS  Google Scholar 

  36. Zhu D, Zhen Q, Xin J, Ma H, Tan L, Pang H, Wang X (2020) A free-standing and flexible phosphorus/nitrogen dual-doped three-dimensional reticular porous carbon frameworks encapsulated cobalt phosphide with superior performance for nitrite detection in drinking water and sausage samples. Sens Actuators B 321:128541. https://doi.org/10.1016/j.snb.2020.128541

    Article  CAS  Google Scholar 

  37. Caban-Acevedo M, Stone ML, Schmidt JR, Thomas JG, Ding Q, Chang H-C, Tsai M-L, He J-H, Jin S (2015) Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater 14:1245–1251. https://doi.org/10.1038/nmat4410

    Article  CAS  Google Scholar 

  38. Sun X, Huang H, Wang C, Liu Y, Hu T-L, Bu X-H (2018) Effective CoxSy her electrocatalysts fabricated by in-situ sulfuration of a metal-organic framework. Chem ElectroChem 5:3639–3644. https://doi.org/10.1002/celc.201801238

    Article  CAS  Google Scholar 

  39. Guo Y, Zhang R, Hao W, Zhang J, Yang Y (2020) Multifunctional Co-B-O@CoxB catalysts for efficient hydrogen generation. Int J Hydrogen Energy 45:380–390. https://doi.org/10.1016/j.ijhydene.2019.09.008

    Article  CAS  Google Scholar 

  40. Kuang M, Wang Q, Han P, Zheng G (2017) Cu, Co-embedded n-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater 7:1700193. https://doi.org/10.1002/aenm.201700193

    Article  CAS  Google Scholar 

  41. Zhou J, Yu L, Zhou Q, Huang C, Zhang Y, Yu B, Yu Y (2021) Ultrafast fabrication of porous transition metal foams for efficient electrocatalytic water splitting. Appl Catal B 288:120002. https://doi.org/10.1016/j.apcatb.2021.120002

    Article  CAS  Google Scholar 

  42. Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal 6:8069–8097. https://doi.org/10.1021/acscatal.6b02479

    Article  CAS  Google Scholar 

  43. Chen J, Xia G, Jiang P et al (2016) Active and durable hydrogen evolution reaction catalyst derived from Pd-doped metal-organic frameworks. ACS Appl Mater Interfaces 8:13378–13383. https://doi.org/10.1021/acsami.6b01266

    Article  CAS  Google Scholar 

  44. Huang B, Chen L, Wang Y, Ouyang L, Ye J (2017) Paragenesis of palladium-cobalt nanoparticle in nitrogen-rich carbon nanotubes as bifunctional electrocatalyst for hydrogen evolution reaction and oxygen reduction reaction. Chemistry 23:7710–7718. https://doi.org/10.1002/chem.201700544

    Article  CAS  Google Scholar 

  45. Du N, Wang C, Long R, Xiong Y (2017) N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: highly active and durable catalysts for oxygen reduction reaction. Nano Res 10:3228–3237. https://doi.org/10.1007/s12274-017-1611-6

    Article  CAS  Google Scholar 

  46. Li J-S, Huang M-J, Chen X-N et al (2020) Synergistically enhanced hydrogen evolution reaction by ruthenium nanoparticles dispersed on N-doped carbon hollow nanospheres. Chem Commun 56:6802. https://doi.org/10.1039/D0CC01765E

    Article  CAS  Google Scholar 

  47. Kitchin JR, Nørskov JK, Barteau MA, Chen J (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801. https://doi.org/10.1103/PhysRevLett.93.156801

    Article  CAS  Google Scholar 

  48. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54:52–65. https://doi.org/10.1002/anie.201407031

    Article  CAS  Google Scholar 

  49. Tabassum H, Guo W, Meng W, Mahmood A, Zhao R, Wang Q, Zou R (2017) Metal-organic frameworks derived cobalt phosphide architecture encapsulated into B/N co-doped graphene nanotubes for all pH value electrochemical hydrogen evolution. Adv Energy Mater 7:1601671. https://doi.org/10.1002/aenm.201601671

    Article  CAS  Google Scholar 

  50. Wang T, Zhou Q, Wang X, Zheng J, Li X (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3:16435–16439. https://doi.org/10.1039/c5ta04001a

    Article  CAS  Google Scholar 

  51. Zhang J, Bai T, Huang H, Yu M-H, Fan X, Chang Z, Bu X-H (2020) Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv Mater 32:2004747. https://doi.org/10.1002/adma.202004747

    Article  CAS  Google Scholar 

  52. Kong L, Zhong M, Shuang W, Xu Y, Bu X-H (2020) Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem Soc Rev 49:2378–2407. https://doi.org/10.1039/c9cs00880b

    Article  CAS  Google Scholar 

  53. Liu M, Kong L, Wang X, He J, Bu X-H (2019) Engineering bimetal synergistic electrocatalysts based on metal-organic frameworks for efficient oxygen evolution. Small 15:1903410. https://doi.org/10.1002/smll.201903410

    Article  CAS  Google Scholar 

  54. Wang C-P, Liu H-Y, Bian G et al (2019) Metal-layer assisted growth of ultralong quasi-2D mof nanoarrays on arbitrary substrates for accelerated oxygen evolution. Small 15:1906086. https://doi.org/10.1002/smll.201906086

    Article  CAS  Google Scholar 

  55. Wang X, Feng Z, Xiao B et al (2020) Polyoxometalate-based metal–organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Green Chem 22:6157. https://doi.org/10.1039/D0GC01149E

    Article  CAS  Google Scholar 

  56. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y (2015) Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene. Angew Chem Int Ed 54:10889–10893. https://doi.org/10.1002/anie.201504242

    Article  CAS  Google Scholar 

  57. Zhong M, Zhang X, Zhao B, Yang D, Xie Z, Zhou Z, Bu X-H (2017) Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li-O2 batteries. Inorg Chem Front 4:1533–1538. https://doi.org/10.1039/c7qi00314e

    Article  CAS  Google Scholar 

  58. Wang S, Wang J, Zhu M et al (2015) Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction. J Am Chem Soc 137:15753. https://doi.org/10.1021/jacs.5b07924

    Article  CAS  Google Scholar 

  59. Xue H, Tang J, Gong H et al (2016) Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered n-doped porous carbon as an efficient catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 8:20766–20771. https://doi.org/10.1021/acsami.6b05856

    Article  CAS  Google Scholar 

  60. Artyushkova K, Kiefer B, Halevi B, Knop-Gericke A, Schlogl R, Atanassov P (2013) Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem Commun 49:2539–2541. https://doi.org/10.1039/c3cc40324f

    Article  CAS  Google Scholar 

  61. Wang AL, He XJ, Lu XF, Xu H, Tong YX, Li GR (2015) Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew Chem Int Ed 54:3669–3673. https://doi.org/10.1002/anie.201410792

    Article  CAS  Google Scholar 

  62. Maheswari S, Karthikeyan S, Murugan P, Sridhar P, Pitchumani S (2012) Carbon-supported Pd-Co as cathode catalyst for APEMFCs and validation by DFT. Phys Chem Chem Phys 14:9683–9695. https://doi.org/10.1039/c2cp40655a

    Article  CAS  Google Scholar 

  63. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180. https://doi.org/10.1039/C4CS00448E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the open fund of the State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals (SKLAB02019006) and the Youth Scientific and Technical Plan Project of Gansu Province (20JR10RA198).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bitao Su or Dahui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4536 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Li, L., Zhao, K. et al. PdCo alloys@N-doped porous carbon supported on reduced graphene oxide as a highly efficient electrocatalyst for hydrogen evolution reaction. J Mater Sci 56, 14222–14233 (2021). https://doi.org/10.1007/s10853-021-06212-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06212-6

Navigation