Skip to main content
Log in

Covalent surface functionalization of carbon nanostructures via [2 + 1] cycloaddition microwave-assisted reactions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of [2 + 1] cycloaddition microwave-assisted reaction as an effective and versatile method for the surface covalent functionalization of single-wall carbon nanotubes (SWCNTs), graphene nanoplates (GNP) and carbon nanofibers (CNF) was studied through the reaction with 4-(azidomethyl) benzoic acid (4-AMBA). Thermal Gravimetric Analysis (TGA) and X-Ray Diffraction (XRD) confirm the successful covalent functionalization with the presence of the organic compound. FTIR spectroscopy and X-Ray Photoelectron spectroscopy (XPS) reaffirm the union between the 4-AMBA and the carbon nanostructures by observing the C–N bond of the formed aziridine ring. Raman spectroscopy and Transmission Electron Microscopy (TEM) reveal the integrity of the graphitic structure after the functionalization process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2.
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Loos M (2015) Allotropes of carbon and carbon nanotubes. Carbon Nanotub Reinf Compos. Elsevier, pp 73–101. doi:https://doi.org/10.1016/B978-1-4557-3195-4.00003-5.

  2. Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59:1–11. https://doi.org/10.1016/j.envint.2013.04.003

    Article  CAS  Google Scholar 

  3. Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: A review of synthesizing, properties and applications. Materials (Basel) 7:3919–3945. https://doi.org/10.3390/ma7053919

    Article  CAS  Google Scholar 

  4. Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Funct Gr Appl 2016:1–29. https://doi.org/10.1007/978-3-319-35110-0_1

    Article  Google Scholar 

  5. Peng X, Wong SS (2009) Functional covalent chemistry of carbon nanotube surfaces. Adv Mater 21:625–642. https://doi.org/10.1002/adma.200801464

    Article  CAS  Google Scholar 

  6. Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41(11):1853–1859. https://doi.org/10.1002/1521-3773(20020603)41:11%3c1853::AID-ANIE1853%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  7. Singh P, Bianco A, Campidelli S, Prato M, Giordani S, Bonifazi D (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38:2214–2230. https://doi.org/10.1039/b518111a

    Article  CAS  Google Scholar 

  8. Hussain S, Jha P, Chouksey A, Raman R, Islam SS, Islam T, Choudhary PK (2011) Harsh, Spectroscopic investigation of modified single wall carbon nanotube (SWCNT). J Mod Phys 2:538–543. https://doi.org/10.4236/jmp.2011.2606

    Article  CAS  Google Scholar 

  9. Holzinger M, Steinmetz J, Samaille D, Glerup M, Paillet M, Bernier P, Ley L, Graupner R (2004) [2+1] cycloaddition for cross-linking SWCNTs. Carbon NY 42:941–947. https://doi.org/10.1016/j.carbon.2003.12.019

    Article  CAS  Google Scholar 

  10. Anfar Z, Amedlous A, Majdoub M, El Fakir AA, Zbair M, El Alem N, Ait Ahsaine H, Jada A (2020) New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals. RSC Adv 10:31087. https://doi.org/10.1039/d0ra05220e

    Article  CAS  Google Scholar 

  11. Majdoub M, Amedlous A, Anfar Z, Jada A, El Alem N (2021) Engineering of amine-based binding chemistry on functionalized graphene oxide/alginate hybrids for simultaneous and efficient removal of trace heavy metals: towards drinking water. J Colloid Interface Sci 589:511–524. https://doi.org/10.1016/j.jcis.2021.01.029

    Article  CAS  Google Scholar 

  12. Anfar Z, El Fakir AA, Zbair M, Hafidi Z, Amedlous A, Majdoub M, Farsad S, Amjlef A, El Alem N, Jada A (2021) New functionalization approach synthesis of Sulfur doped, nitrogen doped and Co-doped porous carbon: superior metal-free carbocatalyst for the catalytic oxidation of aqueous organics pollutants. Chem Eng J 405:126660. https://doi.org/10.1016/j.cej.2020.126660

    Article  CAS  Google Scholar 

  13. Majdoub M, Anfar Z, Amedlous A (2020) Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications. ACS Nano 14:12390–12469. https://doi.org/10.1021/acsnano.0c06116

    Article  CAS  Google Scholar 

  14. Holzinger M, Vostrowsky O (2001) Sidewall functionalization of carbon nanotubes. Angew Chemie Int Ed 40:4002–4005. https://doi.org/10.1002/1521-3773(20011105)40:21%3C4002::AID-ANIE4002%3E3.0.CO;2-8

    Article  CAS  Google Scholar 

  15. Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of Single-Walled Carbon Nanotubes with (R-) Oxycarbonyl Nitrenes. J Am Chem Soc 125:8566–8580. https://doi.org/10.1021/JA029931W

    Article  CAS  Google Scholar 

  16. Han J, Gao C (2010) Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett 2:213–226. https://doi.org/10.5101/nml.v2i3.p213-226

    Article  Google Scholar 

  17. Leinonen H, Rintala J, Siitonen A, Lajunen M, Pettersson M (2010) New nitrene functionalizations onto sidewalls of carbon nanotubes and their spectroscopic analysis. Carbon N Y 48:2425–2434. https://doi.org/10.1016/j.carbon.2010.03.006

    Article  CAS  Google Scholar 

  18. Yadav SK, Mahapatra SS, Yadav MK, Dutta PK (2013) Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2 + 1] cycloaddition of nitrenes. RSC Adv 3:23631–23637. https://doi.org/10.1039/c3ra41990h

    Article  CAS  Google Scholar 

  19. Setaro A, Adeli M, Glaeske M, Przyrembel D, Bisswanger T, Gordeev G, Maschietto F, Faghani A, Paulus B, Weinelt M, Arenal R, Haag R, Reich S (2017) Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat Commun 8:14281. https://doi.org/10.1038/ncomms14281

    Article  CAS  Google Scholar 

  20. Zhang Y, Kang Z, Chen D, Bessho T (2018) Surface functionalization of multiwalled carbon nanotubes by the photo-responsive strategy of π-π stacking and azide-grafting. Surf Interface Anal 50:393–398. https://doi.org/10.1002/sia.6291

    Article  CAS  Google Scholar 

  21. Gao C, He H, Zhou L, Zheng X, Zhang Y (2009) Scalable functional group engineering of carbon nanotubes by improved one-step nitrene chemistry. Chem Mater 21:360–370. https://doi.org/10.1021/cm802704c

    Article  CAS  Google Scholar 

  22. He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064. https://doi.org/10.1021/cm101634k

    Article  CAS  Google Scholar 

  23. Na Kong MR, Shimpi JH, Park O, Ramström MY (2015) Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides. Carbohydr Res 405:33–38. https://doi.org/10.1016/j.carres.2014.09.006

    Article  CAS  Google Scholar 

  24. Faghani A, Donskyi IS, Fardin Gholami M, Ziem B, Lippitz A, Unger WES, Böttcher C, Rabe JP, Haag R, Adeli M (2017) Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials. Angew. Chemie Int Ed 56:2675–2679. https://doi.org/10.1002/anie.201612422

    Article  CAS  Google Scholar 

  25. Guday G, Donskyi IS, Gholami MF, Algara-Siller G, Witte F, Lippitz A, Unger WES, Paulus B, Rabe JP, Adeli M, Haag R (2019) Scalable production of nanographene and doping via nondestructive covalent functionalization. Small 15:1805430. https://doi.org/10.1002/smll.201805430

    Article  CAS  Google Scholar 

  26. Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis-a review. Tetrahedron 57(51):9225–9283. https://doi.org/10.1016/S0040-4020(01)01071-7

    Article  Google Scholar 

  27. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. https://doi.org/10.1021/ar400309b

    Article  CAS  Google Scholar 

  28. Vázquez E, Prato M (2009) Carbon nanotubes and microwaves: interactions. Respons Appl ACS Nano 3:3819–3824. https://doi.org/10.1021/nn901604j

    Article  CAS  Google Scholar 

  29. Kakade BA, Pillai VK (2008) An efficient route towards the covalent functionalization of single walled carbon nanotubes. Appl Surf Sci 254:4936–4943. https://doi.org/10.1016/j.apsusc.2008.01.148

    Article  CAS  Google Scholar 

  30. Karousis N, Ichihashi T, Yudasaka M, Iijima S, Tagmatarchis N (2011) Microwave-assisted functionalization of carbon nanohorns via [2+1] nitrenes cycloaddition. Chem Commun (Camb) 47:1604–1606. https://doi.org/10.1039/c0cc03101a

    Article  CAS  Google Scholar 

  31. Spartan 18 Wavefunction, Inc. Irvine, CA

  32. Servinis L, Henderson LC, Gengenbach TR, Kafi AA, Huson MG, Fox BL (2013) Surface functionalization of unsized carbon fiber using nitrenes derived from organic azides. Carbon NY 54:378–388. https://doi.org/10.1016/j.carbon.2012.11.051

    Article  CAS  Google Scholar 

  33. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chemie Int Ed 44:5188–5240. https://doi.org/10.1002/anie.200400657

    Article  CAS  Google Scholar 

  34. Hodkiewicz J, Wall M, Wall JM (2010) Introduction to Raman spectroscopy as a characterization tool for carbon nanotubes, graphene, and other carbon nanostructures. NSTI-Nanotech. 1:318–321

    CAS  Google Scholar 

  35. Pastine SJ, Okawa D, Kessler B, Rolandi M, Llorente M, Zettl A, Fréchet JMJ (2008) A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J Am Chem Soc 130:4238–4239. https://doi.org/10.1021/ja8003446

    Article  CAS  Google Scholar 

  36. Taha TA, Saleh A (2018) , Dynamic mechanical and optical characterization of PVC/fGO polymer nanocomposites. Appl Phys A Mater Sci Process 124(9):1–12. https://doi.org/10.1007/s00339-018-2026-2

    Article  CAS  Google Scholar 

  37. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1113. https://doi.org/10.1021/ar010155r

    Article  CAS  Google Scholar 

  38. Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes, Raman Scattering in Carbon Nanotubes. In: Cardona M, Merlin R (eds) Light Scattering in Solid IX. Topics in Applied Physics, vol 108. Springer, Berlin

    Google Scholar 

  39. Zhang K, Wang J, Zou J, Cai W, Zhang Q (2018) Low excitation of Raman D-band in [2+1] cycloaddition functionalized single-walled carbon nanotubes. Carbon N Y 138:188–196. https://doi.org/10.1016/J.CARBON.2018.05.073

    Article  CAS  Google Scholar 

  40. Wepasnick KA, Smith BA, Bitter JL, Howard Fairbrother D (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014. https://doi.org/10.1007/s00216-009-3332-5

    Article  CAS  Google Scholar 

  41. Liu J, Zubiri MRi, Vigolo B, Dossotc M, Fortb Y, Ehrhardt J-J, McRae E (2007) Efficient microwave-assisted radical functionalization of single-wall carbon nanotubes. Carbon NY 45:885–891. https://doi.org/10.1016/J.CARBON.2006.11.006

    Article  CAS  Google Scholar 

  42. Luciana De Simone Cividanes GPT (2016) Functionalizing graphene and carbon Nanotubes, 1st edn. Springer Briefs in Applied Sciences and Technology, São Paulo

    Google Scholar 

  43. Wesolowski M, Konarski T (1999) Studies on the thermal decomposition of benzoic acid and its derivatives. J Therm Anal Calorim 55:995–1002. https://doi.org/10.1023/A:1010162607157

    Article  CAS  Google Scholar 

  44. Winter K, Barton D (1970) The thermal decomposition of benzoic acid. Can J Chem 48:3797–3801. https://doi.org/10.1139/v70-641

    Article  CAS  Google Scholar 

  45. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246. https://doi.org/10.1038/nnano.2013.46

    Article  CAS  Google Scholar 

  46. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review, Mater. Sci Eng B Solid State Mater Adv Technol 119:105–118. https://doi.org/10.1016/j.mseb.2005.02.046

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Council of Science and Technology (CONACYT-México) under Grant #256727. We also thank to Dr. Pablo Gonzalez-Morones, Q. Jorge Felix Espinosa, M.Sc. J. Guadalupe Télles, Q.F.B. Bertha Puente Urbina, Ing. Jesus Alfonso Mercado and M.Sc. Maria del Rosario Rangel for their assistance in the laboratory. In addition, thanks to Alejandro Ojeda and finally the National Graphene Materials Laboratory (CONACYT project #293371) for the support in some characterization of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Elizalde.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, J.J., Ledezma, R., Gallardo, C.A. et al. Covalent surface functionalization of carbon nanostructures via [2 + 1] cycloaddition microwave-assisted reactions. J Mater Sci 56, 13524–13539 (2021). https://doi.org/10.1007/s10853-021-06132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06132-5

Navigation