Skip to main content
Log in

Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The corrosion mechanism of as-cast, heat-treated (H400) and extruded (E30, E60, E90) Mg-3Zn-1Mn-1Y alloys with different microstructure is investigated by scan electron microscope (SEM), scan Kelvin probe force microscope (SKPFM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance analysis and immersion experiments equipped with a dynamic corrosion device. The relevant results are as follows: continuously strip-like I-phase (Mg3Zn6Y) in as-cast alloy distributed along the grain boundary played a significant obstacle impact during corrosion, whereas this capability is weakened after heat treatment and large plastic extrusion deformation. However, extrusion deformation significantly improved alloy corrosion performance, the extruded E30 alloy performed superior anti-corrosion behavior among the three extruded alloys owing to the smaller potential difference between I-phase (2.59 V) and DRXed (2.51 V) or un-DRXed (2.54 V) grains. In addition, the corrosion obstacle effect of grains boundaries (the grain boundary has higher potential than the Mg substrate), dense corrosion products film protection (isolate the substrate from contact with SBF) and typical basal texture (lower reactivity of base atoms) have great influence on corrosion behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Liu WC, Zhou BP, Wu GH, Zhang L, Peng X, Cao L (2019) High temperature mechanical behavior of low-pressure sand-cast Mg-Gd-Y-Zr magnesium alloy. J Mag Alloy 7:597–604

    Article  CAS  Google Scholar 

  2. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34

    Article  Google Scholar 

  3. Zheng XB, Du WB, Liu K, Wang ZH, Li SB (2016) Effect of trace addition of Al on microstructure, texture and tensile ductility of Mg-6Zn-0.5Er alloy. J Mag Alloy 4:135–139

    Article  CAS  Google Scholar 

  4. Wu GH, Fan Y, Gao HT, Zhai CQ, Zhu YP (2005) The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater Sci Eng A 408:255–263

    Article  CAS  Google Scholar 

  5. Brar HS, Wong J, Manuel MV (2012) Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 7:87–95

    Article  CAS  Google Scholar 

  6. Shen ZQ, Zhao M, Bian D, Shen DN, Zhou XC, Liu JN, Liu Y, Guo H, Zheng YF (2019) Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. J Mater Sci Technol 35:1393–1402

    Article  Google Scholar 

  7. Lu FM, Ma AB, Jiang JH, Guo Y, Yang DH, Song D, Chen JQ (2015) Significantly improved corrosion resistance of heat-treated Mg-Al-Gd alloy containing profuse needle-like precipitates within grains. Corros Sci 94:171–178

    Article  CAS  Google Scholar 

  8. Swetha CV, Dumpala R, Anand KS, Kondaiah VV, Ratna SB (2018) Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy. J Mag Alloy 6:52–58

    Article  CAS  Google Scholar 

  9. Lu FM, Ma AB, Jiang JH, Yang DH, Song D, Yuan YC, Chen J (2014) Effect of multi-pass equal channel angular pressing on microstructure and mechanical properties of Mg97.1Zn1Gd1.8Zr0.1 alloy. Mater Sci Eng A 594:330–333

    Article  CAS  Google Scholar 

  10. Toorani M, Aliofkhazraei M (2019) Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment. Surf Interfaces 14:262–295. https://doi.org/10.1016/j.surfin.2019.01.004

    Article  CAS  Google Scholar 

  11. Altun H, Sen S (2006) The effect of PVD coatings on the corrosion behavior of AZ91 magnesium alloy. Mater Des 27:1174–1179

    Article  CAS  Google Scholar 

  12. Zhang G, Wu L, Tang AT, Ma YL, Song GL, Zheng DJ, Jiang B, Atrens A, Pan FS (2018) Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros Sci 139:370–382

    Article  CAS  Google Scholar 

  13. Donnadieu P, Benrhaiem S, Tassin C, Volpi F, Blandin JJ (2017) Preparation, microstructure and properties of magnesium-γMg17Al12 complex metallic alloy in situ composites. J Alloys Compd 702:626–635

    Article  CAS  Google Scholar 

  14. Khalajabadi SZ, Ahmad N, Izman S, Haji Abu AB, Haider W, Abdul Kadir MR (2017) In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications. J Alloys Compd 696:768–781

    Article  CAS  Google Scholar 

  15. Liu JH, Song YW, Chen JC, Chen P, Shan DY, Han EH (2016) The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg Alloy. Electrochim Acta 189:190–195

    Article  CAS  Google Scholar 

  16. Zeng RC, Sun XX, Song YW, Zhang F, Li SQ, Cui HZ, Han EH (2013) Influence of solution temperature on corrosion resistance of Zn-Ca phosphate conversion coating on biomedical Mg-Li-Ca alloys. Trans Nonferrous Met Soc China 23:3293–3299

    Article  CAS  Google Scholar 

  17. Takenaka T, Ono T, Narazaki Y, Naka Y, Kawakami M (2007) Improvement of corrosion resistance of magnesium metal by rare earth elements. Electrochim Acta 53:117–121

    Article  CAS  Google Scholar 

  18. Pinto R, Ferreira MGS, Carmezim MJ, Montemor MF (2011) The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochim Acta 56:1535–1545

    Article  CAS  Google Scholar 

  19. Song GL, Aterens A, Wu XL, Zhang B (1998) Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros Sci 40:1769–1791

    Article  CAS  Google Scholar 

  20. Song GL, Aterens A, Dargusch M (1999) Influence of microstructure on the corrosion of diecast AZ91D. Corros Sci 41:249–273

    Article  CAS  Google Scholar 

  21. Yin SQ, Zhang ZQ, Liu X, Le QC, Lan Q, Bao L, Cui JZ (2017) Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg-Zn-Gd-Zr alloys. Mater Sci Eng A 695:135–143

    Article  CAS  Google Scholar 

  22. Wu PP, Xu FJ, Deng KK, Han FY, Zhang ZZ, Gao R (2017) Effect of extrusion on corrosion properties of Mg-2Ca-χAl(χ = 0, 2, 3, 5) alloys. Corros Sci 127:280–290

    Article  CAS  Google Scholar 

  23. Mandal M, Moon AP, Deo G, Mendis CL, Mondal K (2014) Corrosion behavior of Mg-2.4Zn alloy micro-alloyed with Ag and Ca. Corros Sci 78:172–182

    Article  CAS  Google Scholar 

  24. Li JR, Zhang BB, Wei QY, Wang N, Hou BR (2017) Electrochemical behavior of MgAl-Zn-In alloy as anode materials in 3.5 wt.% NaCl solution. Electrochim Acta 238:156–167

    Article  CAS  Google Scholar 

  25. Cao FF, Deng KK, Nie KB, Kang JW, Niu HY (2019) Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging. J Alloys Compd 770:1208–1220

    Article  CAS  Google Scholar 

  26. Cao X, Jia QG, Xu CX, Zhang ZW, Ren CL, Yang WF, Zhang JS (2020) Research on dynamic corrosion behavior and the microstructure of biomedical Mg-Y-Zn-Zr-Sr in simulated body fluid solution after processing by solution treatment. Adv Eng Mater 22:1901146

    Article  CAS  Google Scholar 

  27. Li CQ, Xu DK, Zeng ZR, Wang BJ, Sheng LY, Chen XB, Han EH (2017) Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Mater Des 121:430–441

    Article  CAS  Google Scholar 

  28. Ha HY, Kim HJ, Baek SM, Kim B, Sohn SD, Shin HJ, Jeong HY, Park SH et al (2015) Improved corrosion resistance of extruded Mg–8Sn–1Zn–1Al alloy by microalloying with Mn. Scripta Mater 109:38–43

    Article  CAS  Google Scholar 

  29. Li JR, Jiang QT, Sun HY, Li YT (2016) Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5 wt.% sodium chloride solution. Corros Sci 111:288–301

    Article  CAS  Google Scholar 

  30. Liu C, Bi Q, Leyland A, Matthews A (2003) An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behavior. Corros Sci 45:1257–1273

    Article  CAS  Google Scholar 

  31. Zander D, Zumdick NA (2015) Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys. Corros Sci 93:222–233

    Article  CAS  Google Scholar 

  32. Ge MZ, Xiang JY, Yang L, Wang JT (2017) Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid. Surf Coat Technol 310:157–165

    Article  CAS  Google Scholar 

  33. Liu X, Xue JL, Liu SZ (2018) Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities. Mater Des 160:138–146

    Article  CAS  Google Scholar 

  34. Yin DD, Wang QD, Gao Y, Chen CJ, Zheng J (2011) Effects of heat treatments on microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) alloy. J Alloys Compd 509:1696–1704

    Article  CAS  Google Scholar 

  35. Feng H, Liu SH, Du Y, Lei T, Zeng RC, Yuan TC (2017) Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys. J Alloy Compd 695:2330–2338

    Article  CAS  Google Scholar 

  36. Kovács AK, Gróf P, Burai L, Riedel M (2004) Revising the mechanism of the permanganate/oxalate reaction. J Phys Chem A 108:11026–11031

    Article  CAS  Google Scholar 

  37. Huang ZH, Liang SM, Chen RS, Han EH (2009) Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys. J Alloys Compd 468:170–178

    Article  CAS  Google Scholar 

  38. Zhao YC, Huang GS, Zhang C, Chen L, Han TZ, Pan FS (2018) Effect of texture on the performance of Mg-air battery based on rolled Mg-3Al-1Zn alloy sheet. Rare Met Mater Eng 47:1064–1068

    Article  Google Scholar 

  39. Zhang CZ, Zhu SJ, Wang LG, Guo RM, Yue GC, Guan SK (2016) Microstructures and degradation mechanism in simulated body fluid of biomedical Mg-Zn-Ca alloy processed by high pressure torsion. Mater Des 96:54–62

    Article  CAS  Google Scholar 

  40. Guo L, Zhang F, Song L, Zeng RC, Li SQ, Han EH (2017) Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surf Coat Technol 307:500–505

    Google Scholar 

  41. Lee YL, Chu YR, Chen FJ, Lin CS (2013) Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys. Appl Surf Sci 276:578–585

    Article  CAS  Google Scholar 

  42. Jönsson M, Persson D, Thierry D (2007) Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corros Sci 49:1540–1558

    Article  CAS  Google Scholar 

  43. Radwan AB, Ali K, Shakoor RA, Mohammed H, Alsalama T, Kahraman R, Yusuf MM, Abdullah AM, Montemor MF, Helal M (2018) Properties enhancement of Ni-P electrodeposited coatings by the incorporation of nanoscale Y2O3 particles. Appl Surf Sci 457:956–967

    Article  CAS  Google Scholar 

  44. Li Y, Xiao WL, Wang F, Hu T, Ma CL (2018) The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys. J Alloys Compd 745:33–43

    Article  CAS  Google Scholar 

  45. Liu J, Yang LX, Zhang CY, Zhang B, Zhang T, Li Y, Wu KM, Wang FH (2019) Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys. J Alloys Compd 782:648–658

    Article  CAS  Google Scholar 

  46. Jiang B, Xiang Q, Atrens A, Song JF, Pan FS (2017) Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corros Sci 126:374–380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China [No.51574175 and 51474153].

Author information

Authors and Affiliations

Authors

Contributions

Xin Cao made substantial contributions to the conception, design of the work, analysis and interpretation of data; Zhengwei Zhang drafted the work or revised it critically for important intellectual content; Chunxiang Xu approved the version to be published; and Wenfu Yang and Jinshan Zhang agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy and integrity of any part of the work.

Corresponding author

Correspondence to Chunxiang Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Xu, C., Zhang, Z. et al. Effect of I-phase morphology and microstructure transformation in biomedical Mg-3Zn-1Mn-1Y alloys on vitro degradation behavior in dynamic simulated body fluid. J Mater Sci 56, 12394–12411 (2021). https://doi.org/10.1007/s10853-021-06091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06091-x

Navigation