Skip to main content
Log in

Robust fluorinated siloxane copolymers via initiated chemical vapor deposition for corrosion protection

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Homopolymers of 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4D4), 2-(perfluorohexyl)ethyl acrylate (PFHEA) and 2-(perfluoroalkyl)ethyl methacrylate (PFEMA) and their copolymers were synthesized via initiated chemical vapor deposition (iCVD). All coatings exhibited excellent adhesion to substrates. The corrosion resistance of iCVD coatings was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. In addition, chemical durability of various organic solvents and adhesion to the substrate were also evaluated. Tafel polarization measurements in 5 wt% NaCl solution revealed that the corrosion rates as low as 0.002 mpy on zinc substrates can be reached with 250-nm-thick iCVD-synthesized polymers which is lower than previously reported polymer coatings and more than three orders of magnitude lower than bare zinc. EIS analysis coupled with equivalent electric circuits model confirmed that poly(V4D4) and poly(PFHEA) homopolymers show extremely high protection efficiencies (~ 99%) on zinc, while poly(V4D4-co-PFHEA) copolymer with slightly lower corrosion efficiency (85–91%) provides a better anticorrosion barrier with weight loss reduction by 57 and 45% for copper and zinc, respectively, and with improved chemical and mechanical properties. The results indicate that iCVD process enables fabrication of finely tuned fluorinated siloxane copolymer conformal coatings for corrosion protection on a variety of substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Chen Y, Ye YM, Chen ZR (2019) Vapor-based synthesis of bilayer anti-corrosion polymer coatings with excellent barrier property and superhydrophobicity. J Mater Sci 54:5907–5917. https://doi.org/10.1007/s10853-018-03232-7

    Article  CAS  Google Scholar 

  2. Rajitha K, Mohana KN (2020) Application of modified graphene oxide - polycaprolactone nanocomposite coating for corrosion control of mild steel in saline medium. Mater Chem Phys 241:122050. https://doi.org/10.1016/j.matchemphys.2019.122050

    Article  CAS  Google Scholar 

  3. Nautiyal A, Qiao MY, Cook JE, Zhang XY, Huang TS (2018) High performance polypyrrole coating for corrosion protection and biocidal applications. Appl Surf Sci 427:922–930. https://doi.org/10.1016/j.apsusc.2017.08.093

    Article  CAS  Google Scholar 

  4. Cao N, Miao YY, Zhang DL, Boukherroub R, Lin XG, Ju H, Li HP (2018) Preparation of mussel-inspired perfluorinated polydopamine film on brass substrates: superhydrophobic and anti-corrosion application. Prog Org Coat 125:109–118. https://doi.org/10.1016/j.porgcoat.2018.09.007

    Article  CAS  Google Scholar 

  5. Ikhe AB, Kale AB, Jeong J, Reece MJ, Choi SH, Pyo M (2016) Perfluorinated polysiloxane polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy. Corros Sci 109:238–245. https://doi.org/10.1016/j.corsci.2016.04.010

    Article  CAS  Google Scholar 

  6. Caldona EB, Smith DW, Wipf DO (2020) Protective action of semi-fluorinated perfluorocyclobutyl polymer coatings against corrosion of mild steel. J Mater Sci 55:1796–1812. https://doi.org/10.1007/s10853-019-04025-2

    Article  CAS  Google Scholar 

  7. Semiletov AM, Chirkunov AA, Kuznetsov YI (2020) Protection of aluminum alloy AD31 from corrosion by adsorption layers of trialkoxysilanes and stearic acid. Mater Corros 71:77–85. https://doi.org/10.1002/maco.201911000

    Article  CAS  Google Scholar 

  8. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Tech 201:3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129

    Article  CAS  Google Scholar 

  9. Graham P, Stone M, Thorpe A, Nevell TG, Tsibouklis J (2000) Fluoropolymers with very low surface energy characteristics. J Fluorine Chem 104:29–36. https://doi.org/10.1016/S0022-1139(00)00224-4

    Article  CAS  Google Scholar 

  10. Munekata S (1988) Fluoropolymers as coating material. Prog Org Coat 16:113–134. https://doi.org/10.1016/0033-0655(88)80010-4

    Article  CAS  Google Scholar 

  11. Scheirs J (1997) Modern Fluoropolymers: high performance polymers for diverse applications, 1st edn. Wiley, Chichester

    Google Scholar 

  12. Yang MK, French RH, Tokarsky EW (2008) Optical properties of teflon-AF amorphous fluoropolymers. J Micro/Nanolith MEMS MOEMS 7:1–9. https://doi.org/10.1117/1.2965541

    Article  CAS  Google Scholar 

  13. Banks RE, Smart BE, Tatlow J (1994) Organofluorine chemistry: principles and commercial applications, 1st edn. Springer, US

    Book  Google Scholar 

  14. He YL, Walsh D, Shi C (2015) Fluoropolymer composite coating for condensing heat exchangers: characterization of the mechanical, tribological and thermal properties. Appl Therm Eng 91:387–398. https://doi.org/10.1016/j.applthermaleng.2015.08.035

    Article  CAS  Google Scholar 

  15. Emarati SM, Mozammel M (2020) Theoretical, fundamental and experimental study of liquid-repellency and corrosion resistance of fabricated superamphiphobic surface on Al alloy 2024. Chem Eng J 387:124046. https://doi.org/10.1016/j.cej.2020.124046

    Article  CAS  Google Scholar 

  16. Huang Y, Sarkar DK, Chen XG (2015) Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties. Appl Surf Sci 356:1012–1024. https://doi.org/10.1016/j.apsusc.2015.08.166

    Article  CAS  Google Scholar 

  17. Jeong HE, Kwak MK, Park CI, Suh KY (2009) Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. J Colloid Interf Sci 339:202–207. https://doi.org/10.1016/j.jcis.2009.07.020

    Article  CAS  Google Scholar 

  18. Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5:2097–2103. https://doi.org/10.1021/nl051435t

    Article  CAS  Google Scholar 

  19. Nishimoto S, Sawai Y, Kameshima Y, Miyake M (2014) Underwater superoleophobicity of TiO2 nanotube arrays. Chem Lett 43:518–520. https://doi.org/10.1246/cl.131155

    Article  CAS  Google Scholar 

  20. Steele A, Nayak BK, Davis A, Gupta MC, Loth E (2013) Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing. J Micromech Microeng 23:115012. https://doi.org/10.1088/0960-1317/23/11/115012

    Article  CAS  Google Scholar 

  21. Bravo J, Zhai L, Wu ZZ, Cohen RE, Rubner MF (2007) Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23:7293–7298. https://doi.org/10.1021/la070159q

    Article  CAS  Google Scholar 

  22. Chunder A, Etcheverry K, Londe G, Cho HJ, Zhai L (2009) Conformal switchable superhydrophobic/hydrophilic surfaces for microscale flow control. Colloid Surf A Physicochem Eng Asp 333:187–193. https://doi.org/10.1016/j.colsurfa.2008.09.044

    Article  CAS  Google Scholar 

  23. Liu Q, Chen DX, Kang ZX (2015) One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy. ACS Appl Mater Inter 7:1859–1867. https://doi.org/10.1021/am507586u

    Article  CAS  Google Scholar 

  24. Liang J, Hu YC, Wu YQ, Chen H (2014) Facile formation of superhydrophobic silica-based surface on aluminum substrate with tetraethylorthosilicate and vinyltriethoxysilane as co-precursor and its corrosion resistant performance in corrosive NaCl aqueous solution. Surf Coat Tech 240:145–153. https://doi.org/10.1016/j.surfcoat.2013.12.028

    Article  CAS  Google Scholar 

  25. Mahadik SA, Pedraza F, Vhatkar RS (2016) Silica based superhydrophobic coating for long-term industrial and domestic applications. J Alloy Compd 663:487–493. https://doi.org/10.1016/j.jallcom.2015.12.016

    Article  CAS  Google Scholar 

  26. Han DW, Steckl AJ (2009) Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25:9454–9462. https://doi.org/10.1021/la900660v

    Article  CAS  Google Scholar 

  27. Li XH, Ding B, Lin JY, Yu JY, Sun G (2009) Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J Phys Chem C 113:20452–20457. https://doi.org/10.1021/jp9076933

    Article  CAS  Google Scholar 

  28. Leivo E, Wilenius T, Kinos T, Vuoristo P, Mantyla T (2004) Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Org Coat 49:69–73. https://doi.org/10.1016/j.porgcoat.2003.08.011

    Article  CAS  Google Scholar 

  29. Zhu HF, Hou J, Qiu R, Zhao J, Xu JK (2014) Perfluorinated lubricant/polypyrrole composite material: Preparation and corrosion inhibition application. J Appl Polym Sci 131(1–5):40184. https://doi.org/10.1002/app.40184

    Article  CAS  Google Scholar 

  30. Liu T, Chen S, Cheng S, Tian J, Chang X, Yin Y (2007) Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim Acta 52:8003–8007. https://doi.org/10.1016/j.electacta.2007.06.072

    Article  CAS  Google Scholar 

  31. Ates M (2016) A review on conducting polymer coatings for corrosion protection. J Adhes Sci and Technol 30:1510–1536. https://doi.org/10.1080/01694243.2016.1150662

    Article  CAS  Google Scholar 

  32. Zhao J, Wang M, Jebutu MS, Zhu M, Gleason KK (2019) Fundamental nanoscale surface strategies for robustly controlling heterogeneous nucleation of calcium carbonate. J Mater Chem A 7:17242–17277. https://doi.org/10.1039/c9ta04341a

    Article  CAS  Google Scholar 

  33. Liang T, Makita Y, Kimura S (2001) Effect of film thickness on the electrical properities of polyimide thin films. Polymer 42:4867–4872. https://doi.org/10.1016/S0032-3861(00)00881-8

    Article  CAS  Google Scholar 

  34. Kaufman FB, Schroeder AH, Engler EM, Kramer SR, Chamber JQ (1980) Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes. J Am Chem Soc 102:483–488. https://doi.org/10.1021/ja00522a007

    Article  CAS  Google Scholar 

  35. Roldughin VI, Vysotskii VV (2000) Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity. Prog Org Coat 39:81–100. https://doi.org/10.1016/S0300-9440(00)00140-5

    Article  CAS  Google Scholar 

  36. Chan K, Gleason KK (2005) Initiated chemical vapor deposition of linear and cross-linked poly(2-hydroxyethyl methacrylate) for use as thin-film hydrogels. Langmuir 21:8930–8939. https://doi.org/10.1021/la051004q

    Article  CAS  Google Scholar 

  37. Coclite AM, Ozaydin-Ince G, d’Agostino R, Gleason KK (2009) Flexible cross-linked organosilicon thin films by initiated chemical vapor deposition. Macromolecules 42:8138–8145. https://doi.org/10.1021/ma901431m

    Article  CAS  Google Scholar 

  38. Ishizaki T, Hieda J, Saito N, Saito N, Takai O (2010) Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition. Electrochim Acta 55:7094–7101. https://doi.org/10.1016/j.electacta.2010.06.064

    Article  CAS  Google Scholar 

  39. Zhu HB, Hu WH, Zhao SP, Zhang X, Pei L, Zhao GZ, Wang Z (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55:2215–2225. https://doi.org/10.1007/s10853-019-04050-1

    Article  CAS  Google Scholar 

  40. Yoo Y, You JB, Choi W, Im SG (2013) A stacked polymer film for robust superhydrophobic fabrics. Polym Chem 4:1664–1671. https://doi.org/10.1039/c2py20963b

    Article  CAS  Google Scholar 

  41. Achyuta AKH, White AJ, Lewis HGP, Murthy SK (2009) Incorporation of linear spacer molecules in vapor-deposited silicone polymer thin films. Macromolecules 42:1970–1978. https://doi.org/10.1021/ma802330s

    Article  CAS  Google Scholar 

  42. Seok JH, Kim SH, Cho SM, Yi GR, Lee JY (2018) Crosslinked organosilicon-acrylate copolymer moisture barrier thin film fabricated by initiated chemical vapor deposition (iCVD). Macromol Res 26:1257–1264. https://doi.org/10.1007/s13233-019-6149-2

    Article  CAS  Google Scholar 

  43. Grignard B, Vaillant A, Coninck J, Piens M, Jonas AM, Detrembleur C, Jerome C (2011) Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates. Langmuir 27:335–342. https://doi.org/10.1021/la102808w

    Article  CAS  Google Scholar 

  44. Goksel Y, Akdogan Y (2019) Increasing spontaneous wet adhesion of DOPA with gelation characterized by EPR spectroscopy. Mater Chem Phys 228:124–130. https://doi.org/10.1016/j.matchemphys.2019.02.054

    Article  CAS  Google Scholar 

  45. Lee HS, Kim H, Jeong HL, Kwak JB (2019) Fabrication of a conjugated fluoropolymer film using one-step iCVD process and its mechanical durability. Coatings 9(1–9):430. https://doi.org/10.3390/coatings9070430

    Article  CAS  Google Scholar 

  46. Ozpirin M, Ebil O (2018) Transparent block copolymer thin films for protection of optical elements via chemical vapor deposition. Thin Solid Films 660:391–398. https://doi.org/10.1016/j.tsf.2018.06.044

    Article  CAS  Google Scholar 

  47. Wang QY, Zhang QH, Zhan XL, Chen FQ (2010) Structure and surface properties of polyacrylates with short fluorocarbon side chain: Role of the main chain and spacer group. J Polym Sci A Polym Chem 48:2584–2593. https://doi.org/10.1002/pola.24038

    Article  CAS  Google Scholar 

  48. Zhang QH, Wang QY, Zhan XL, Chen FQ (2014) Synthesis and performance of novel fluorinated acrylate polymers: preparation and reactivity of short perfluoroalkyl group containing monomers. Ind Eng Chem Res 53:8026–8034. https://doi.org/10.1021/ie404217d

    Article  CAS  Google Scholar 

  49. Yin X, Song YZ, Liang ZY, Zhang B, Fang LF, Zhu LP, Zhu BK (2017) Synthesis of sulfonyl fluorinated macro emulsifier for low surface energy emulsion polymerization application. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.44921

    Article  CAS  Google Scholar 

  50. Trujillo NJ, Baxamusa SH, Gleason KK (2009) Grafted functional polymer nanostructures patterned bottom-up by colloidal lithography and initiated Chemical Vapor Deposition (iCVD). Chem Mater 21:742–750. https://doi.org/10.1021/cm803008r

    Article  CAS  Google Scholar 

  51. O’Shaughnessy WS, Gao ML, Gleason KK (2006) Initiated chemical vapor deposition of trivinyltrimethylcyclotrisiloxane for biomaterial coatings. Langmuir 22:7021–7026. https://doi.org/10.1021/la607858

    Article  CAS  Google Scholar 

  52. Altındag IA, Akdogan Y (2021) Spectrophotometric characterization of plasticizer migration in poly(vinyl chloride) based artificial leather. Mater Chem Phys 258(1–7):123954. https://doi.org/10.1016/j.matchemphys.2020.123954

    Article  CAS  Google Scholar 

  53. Gleason KK (2012) CVD Polymers: fabrication of organic surfaces and devices, 2nd edn. Wiley-VCH, Germany

    Google Scholar 

  54. Tsibouklis J, Graham P, Eaton PJ, Smith JR, Nevell TG, Smart JD, Ewen RJ (2000) Poly(perfluoroalkyl methacrylate) film structures: Surface organization phenomena, surface energy determinations, and force of adhesion measurements. Macromolecules 33:8460–8465. https://doi.org/10.1021/ma0008185

    Article  CAS  Google Scholar 

  55. Pawar P, Gaikwad AB, Patil PP (2007) Corrosion protection aspects of electrochemically synthesized poly(o-anisidine-co-o-toluidine) coatings on copper. Electrochim Acta 52:5958–5967. https://doi.org/10.1016/j.electacta.2007.03.043

    Article  CAS  Google Scholar 

  56. Sadagopan S, Muthukrishnan S, Venkatachari G, Trivedi DC (2005) Corrosion protection of steel by polyaniline (PANI) pigmented paint coating. Prog Org Coat 53:297–301. https://doi.org/10.1016/j.porgcoat.2005.03.007

    Article  CAS  Google Scholar 

  57. Sakai RT, da Cruz DL, FM, Meloc HG, Benedetti AV, Santilli CV, Suegama PH, (2012) Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5% NaCl solution. Prog Org Coat 74:288–301. https://doi.org/10.1016/j.porgcoat.2012.01.001

    Article  CAS  Google Scholar 

  58. Kunst SR, Cardoso HRP, Oliveira CT, Santana JA, Sarmento VHV, Muller IL, Malfatti CF (2014) Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Appl Surf Sci 298:1–11. https://doi.org/10.1016/j.apsusc.2013.09.182

    Article  CAS  Google Scholar 

  59. Hsu CH, Mansfeld F (2001) Technical note: Concerning the conversion of the constant phase element parameter Yo into a capacitance. Corrosion-Houston Tx 57:747–748. https://doi.org/10.5006/1.3280607

    Article  CAS  Google Scholar 

  60. Jüttner K (1990) Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim Acta 35:1501–1508. https://doi.org/10.1016/0013-4686(90)80004-8

    Article  Google Scholar 

  61. Loveday D, Peterson P, Rodgers B (2004) Evaluation of organic coatings with electrochemical impedance spectroscopy part 1: Fundamentals of electrochemical impedance spectroscopy. JCT Coatings Tech 1:46–52

    CAS  Google Scholar 

  62. Loveday D, Peterson P, Rodgers B (2004) Evaluation of organic coatings with electrochemical impedance spectroscopy part 2: Application of EIS to coatings. JCT Coatings Tech 1:88–93

    CAS  Google Scholar 

  63. Loveday D, Peterson P, Rodgers B (2005) Evaluation of organic coatings with electrochemical impedance spectroscopy part 3: Protocols for testing coatings with EIS. JCT Coat Tech 2:22–27

    CAS  Google Scholar 

  64. Pan J, Thierry D, Leygraf C (1996) Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim Acta 41:1143–1153. https://doi.org/10.1016/0013-4686(95)00465-3

    Article  CAS  Google Scholar 

  65. Feliu SJ (2020) Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: Brief review and challenges. Metals 10(1–22):775. https://doi.org/10.3390/met10060775

    Article  CAS  Google Scholar 

  66. ISO 8407:2009 (2009) Corrosion of metals and alloys-removal of corrosion products from corrosion test specimens.

  67. Çakmakcı I, Duran B, Duran M, Bereket G (2013) Experimental and theoretical studies on protective properties of poly(pyrrole-co-N-methyl pyrrole) coatings on copper in chloride media. Corros Sci 69:252–261

    Article  Google Scholar 

  68. Redondo MI, Sánchez de la Blanca E, García MV, González-Tejera MJ (2009) Poly(N-methyl pyrrole) electrodeposited on copper: Corrosion protection properties. Prog Org Coat 65:386–391. https://doi.org/10.1016/j.porgcoat.2009.03.003

    Article  CAS  Google Scholar 

  69. Meng Y, Liu L, Zhang D, Dong C, Yan Y, Volinsky AA, Wang LN (2019) Initial formation of corrosion products on pure zinc in saline solution. Bioact Mater 4:87–96. https://doi.org/10.1016/j.bioactmat.2018.08.003

    Article  Google Scholar 

  70. Han G, Jiang P, Wang J, Yan F (2016) Effect of NaCl concentration on wear-corrosion beviour of SAF 2507 super duplex stainless steel. RCS Adv 6:111261–111268. https://doi.org/10.1039/c6ra23030j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Grant Number 114M233).

Author information

Authors and Affiliations

Authors

Contributions

GC was involved in conceptualization, investigation, formal analysis, writing—original draft, visualization. ÖE contributed to writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Özgenç Ebil.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3689 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cihanoğlu, G., Ebil, Ö. Robust fluorinated siloxane copolymers via initiated chemical vapor deposition for corrosion protection. J Mater Sci 56, 11970–11987 (2021). https://doi.org/10.1007/s10853-021-06060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06060-4

Navigation