Skip to main content

Advertisement

Log in

A review of the design of high-entropy aluminum alloys: a pathway for novel Al alloys

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum (Al) alloys are of great importance and interest because of their extensive applications in various engineering fields. Lightweighting of our infrastructure has been a driver for more than the last two decades as our need to reduce carbon footprint on a global scale has become an inevitable reality. As a result, we have witnessed much progress in alloy development in Al alloys, especially with the advent of Integrated Computational Materials Engineering (ICME) and other computational tools. However, the limitations of the properties one may attain through alloy development to date have relied on the traditional solvent/solute model, where the matrix is Al with additions of elements (solute) to the matrix. Despite making much progress, we are still locked-in to the strength-ductility curve without any appreciable increase in modulus (stiffness) of the alloy. High Entropy Alloys (HEAs) provide a new paradigm as they differ from conventional alloys in entropy-based mixing logic of various elements, which is different from the solvent/solute model. HEAs offer the opportunity to move out of the strength-ductility curve as well as the opportunity to increase the alloy’s modulus. In this paper, we present a retrospective view of Al alloys, followed with an understanding of the principles of HEAs, and lastly, with the idea of applying high entropy concept to conventional Al alloys to develop a novel Al alloy category, which we have coined HEAl. Preliminary results with a commentary on potential future opportunities are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

All the data required to reproduce this work is provided in the manuscript.

References

  1. Davis JR (2001) Alloying: understanding the basics

  2. McCarty LV, Craig NC (1997) Production of aluminum metal by electrochemistry

  3. Haupin W (1983) Electrochemistry of the Hall–Heroult process for aluminum smelting. ACS Publications

  4. Scott (2003) Handbook of aluminum: Volume 2: Alloy production and materials manufacturing. Marcel Dekker Inc, New York

  5. Dwight J (1998) Aluminium design and construction. CRC Press

  6. Guinier A (1938) Structure of age-hardened aluminium-copper alloys. Nature 142:569–570

    Article  CAS  Google Scholar 

  7. Preston G (1938) Structure of age-hardened aluminium-copper alloys. Nature 142:570–570

    Article  CAS  Google Scholar 

  8. Preston G (1938) The diffraction of X-rays by age-hardening aluminium copper alloys. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp 526–538

  9. Preston G (1938) LXXIV. The diffraction of X-rays by an age-hardening alloy of aluminium and copper. The structure of an intermediate phase. Lond Edinburgh Dublin Philos Mag J Sci 26:855–871

    Article  CAS  Google Scholar 

  10. Runge J (2018) The metallurgy of anodizing aluminum. Springer, Chicago

    Book  Google Scholar 

  11. (1990) Properties of wrought aluminum and aluminum alloys, vol 2. ASM International

  12. Council NR (2015) Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. National Academies Press

  13. Worldwide D (2011) Aluminum in 2012 North American light vehicles. Troy, Michigan, pp. 1–54

  14. Din T, Campbell J (1996) High strength aerospace aluminium casting alloys: a comparative study. Mater Sci Technol 12:644–650

    Article  CAS  Google Scholar 

  15. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218

    Article  CAS  Google Scholar 

  16. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT et al (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303

    Article  CAS  Google Scholar 

  17. Koželj P, Vrtnik S, Jelen A, Jazbec S, Jagličić Z, Maiti S et al (2014) Discovery of a superconducting high-entropy alloy. Phys Rev Lett 113:107001

    Article  CAS  Google Scholar 

  18. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765

    Article  CAS  Google Scholar 

  19. Tsai K-Y, Tsai M-H, Yeh J-W (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61:4887–4897

    Article  CAS  Google Scholar 

  20. Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK et al (2014) Microstructures and properties of high-entropy alloys. Prog Mater Sci 61:1–93

    Article  CAS  Google Scholar 

  21. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19:349–362

    Article  CAS  Google Scholar 

  22. Ma D, Yao M, Pradeep KG, Tasan CC, Springer H, Raabe D (2015) Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys. Acta Mater 98:288–296

    Article  CAS  Google Scholar 

  23. Deng Y, Tasan CC, Pradeep KG, Springer H, Kostka A, Raabe D (2015) Design of a twinning-induced plasticity high entropy alloy. Acta Mater 94:124–133

    Article  CAS  Google Scholar 

  24. Yao MJ, Pradeep KG, Tasan CC, Raabe D (2014) A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater 72–73:5–8

    Article  CAS  Google Scholar 

  25. He F, Wang Z, Wu Q, Niu S, Li J, Wang J et al (2017) Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Mater 131:42–46

    Article  CAS  Google Scholar 

  26. Pradeep KG, Tasan CC, Yao MJ, Deng Y, Springer H, Raabe D (2015) Non-equiatomic high entropy alloys: approach towards rapid alloy screening and property-oriented design. Mater Sci Eng A 648:183–192

    Article  CAS  Google Scholar 

  27. Yeh J-W (2006) Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux 31:633–648

    Article  CAS  Google Scholar 

  28. Yeh JW, Chen YL, Lin SJ, Chen SK (2007) High-entropy alloys–a new era of exploitation. In: Materials science forum, pp 1–9

  29. Miracle D, Miller J, Senkov O, Woodward C, Uchic M, Tiley J (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16:494–525

    Article  CAS  Google Scholar 

  30. Zhang Y, Lv Y-N (2008) On the nonisospectral modified Kadomtsev–Peviashvili equation. J Math Anal Appl 342:534–541

    Article  Google Scholar 

  31. Mansoori G, Carnahan NF, Starling K, Leland T Jr (1971) Equilibrium thermodynamic properties of the mixture of hard spheres. J Chem Phys 54:1523–1525

    Article  CAS  Google Scholar 

  32. George EP, Curtin W, Tasan CC (2019) High entropy alloys: a focused review of mechanical properties and deformation mechanisms. Acta Mater

  33. Senkov ON, Miracle DB, Chaput KJ, Couzinie J-P (2018) Development and exploration of refractory high entropy alloys—a review. J Mater Res 33:3092–3128

    Article  CAS  Google Scholar 

  34. Li C, Zhao M, Li JC, Jiang Q (2008) B2 structure of high-entropy alloys with addition of Al. J Appl Phys 104:113504

    Article  CAS  Google Scholar 

  35. Tong C-J, Chen Y-L, Yeh J-W, Lin S-J, Chen S-K, Shun T-T et al (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:881–893

    Article  Google Scholar 

  36. Ren B, Liu ZX, Cai B, Wang MX, Shi L (2012) Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater Des 33:121–126

    Article  CAS  Google Scholar 

  37. Chen S-T, Tang W-Y, Kuo Y-F, Chen S-Y, Tsau C-H, Shun T-T et al (2010) Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater Sci Eng A 527:5818–5825

    Article  CAS  Google Scholar 

  38. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2015) Design of high entropy alloys: a single-parameter thermodynamic rule. Scripta Mater 104:53–55

    Article  CAS  Google Scholar 

  39. Senkov O, Miller J, Miracle D, Woodward C (2015) Accelerated exploration of multi-principal element alloys with solid solution phases. Nat Commun 6:1–10

    Article  CAS  Google Scholar 

  40. Butler T, Chaput K, Dietrich J, Senkov O (2017) High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J Alloys Compd 729:1004–1019

    Article  CAS  Google Scholar 

  41. Gorsse S, Miracle DB, Senkov ON (2017) Mapping the world of complex concentrated alloys. Acta Mater 135:177–187

    Article  CAS  Google Scholar 

  42. George EP, Raabe D, Ritchie RO (2019) High-entropy alloys. Nat Rev Mater 4:515–534

    Article  CAS  Google Scholar 

  43. MacDonald B, Fu Z, Zheng B, Chen W, Lin Y, Chen F et al (2017) Recent progress in high entropy alloy research. JOM 69:2024–2031

    Article  Google Scholar 

  44. Praveen S, Murty BS, Kottada RS (2013) Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65:1797–1804

    Article  CAS  Google Scholar 

  45. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    Article  CAS  Google Scholar 

  46. Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123

    Article  CAS  Google Scholar 

  47. Tsai M-H, Wang C-W, Tsai C-W, Shen W-J, Yeh J-W, Gan J-Y et al (2011) Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161–H1165

    Article  CAS  Google Scholar 

  48. Tsai M-H, Yeh J-W, Gan J-Y (2008) Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516:5527–5530

    Article  CAS  Google Scholar 

  49. Chen Y, Duval T, Hong U, Yeh J, Shih H, Wang L et al (2007) Corrosion properties of a novel bulk Cu0. 5NiAlCoCrFeSi glassy alloy in 288° C high-purity water. Mater Lett 61:2692–2696

    Article  CAS  Google Scholar 

  50. Singh S, Wanderka N, Murty B, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59:182–190

    Article  CAS  Google Scholar 

  51. Yeh J-W, Lin S-J, Chin T-S, Gan J-Y, Chen S-K, Shun T-T et al (2004) Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall Mater Trans A 35:2533–2536

    Article  Google Scholar 

  52. Senkov ON, Senkova S, Woodward C, Miracle DB (2013) Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: microstructure and phase analysis. Acta Mater 61:1545–1557

    Article  CAS  Google Scholar 

  53. Ranganathan S (2003) Alloyed pleasures: multimetallic cocktails. Curr Sci 85:1404–1406

    Google Scholar 

  54. Liu SBKYL, Kim HW (1999) The complex microstructures in an as-cast Al–Mg–Si alloy. Mater Lett 41:267–272

    Article  CAS  Google Scholar 

  55. Wang ER, Hui XD, Chen GL (2011) Eutectic Al–Si–Cu–Fe–Mn alloys with enhanced mechanical properties at room and elevated temperature. Mater Des 32:4333–4340

    Article  CAS  Google Scholar 

  56. Anasara NDI, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30

    Article  Google Scholar 

  57. Cooke A, Martin J (1976) Tensile yielding of Al-Al 3 Ni eutectic crystals. J Mater Sci 11:665–669. https://doi.org/10.1007/BF01209452

    Article  CAS  Google Scholar 

  58. Fan Y, Makhlouf MM (2015) The Al-Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall Mater Trans A 46:3808–3812

    Article  CAS  Google Scholar 

  59. Apelian D, Makhlouf M (2013) Aluminum die casting alloy. U.S. Patent Application No. US 2013/0199680 A1

  60. Fan Y, Makhlouf MM (2016) The effect of introducing the Al–Ni eutectic composition into Al–Zr–V alloys on microstructure and tensile properties. Mater Sci Eng A 654:228–235

    Article  CAS  Google Scholar 

  61. Fan Y (2015) Precipitation strengthening of aluminum by transition metal aluminides. PhD Dissertation, Worcester Polytechnic Institute. https://digitalcommons.wpi.edu/etd-dissertations/209.

  62. Maulik O, Kumar D, Kumar S, Dewangan SK, Kumar V (2018) Structure and properties of lightweight high entropy alloys: a brief review. Mater Res Express 5:052001

    Article  CAS  Google Scholar 

  63. Feng R, Gao MC, Lee C, Mathes M, Zuo T, Chen S et al (2016) Design of light-weight high-entropy alloys. Entropy 18:333

    Article  CAS  Google Scholar 

  64. Zhang B, Liaw PK, Brechtl J, Ren J, Guo X, Zhang Y (2020) Effects of Cu and Zn on microstructures and mechanical behavior of the medium-entropy aluminum alloy. J Alloys Compd 820:153092

    Article  CAS  Google Scholar 

  65. Shao L, Zhang T, Li L, Zhao Y, Huang J, Liaw PK et al (2018) A low-cost lightweight entropic alloy with high strength. J Mater Eng Perform 27:6648–6656

    Article  CAS  Google Scholar 

  66. Liao Y, Li T, Tsai P, Jang J, Hsieh K, Chen C et al (2020) Designing novel lightweight, high-strength and high-plasticity Tix (AlCrNb) 100–x medium-entropy alloys. Intermetallics 117:106673

    Article  CAS  Google Scholar 

  67. Jia Y, Jia Y, Wu S, Ma X, Wang G (2019) Novel ultralight-weight complex concentrated alloys with high strength. Materials 12:1136

    Article  CAS  Google Scholar 

  68. Chauhan P, Yebaji S, Nadakuduru VN, Shanmugasundaram T (2020) Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. J Alloys Compd 820:153367

    Article  CAS  Google Scholar 

  69. Sanchez JM, Vicario I, Albizuri J, Guraya T, Garcia JC (2019) Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. J Market Res 8:795–803

    CAS  Google Scholar 

  70. Tseng K, Yang Y, Juan C, Chin T, Tsai C, Yeh J (2018) A light-weight high-entropy alloy Al 20 Be 20 Fe 10 Si 15 Ti 35. Sci China Technol Sci 61:184–188

    Article  CAS  Google Scholar 

  71. Olson GB (2000) Designing a new material world. Science 288:993–998

    Article  CAS  Google Scholar 

  72. Gludovatz B, George EP, Ritchie RO (2015) Processing, microstructure and mechanical properties of the CrMnFeCoNi high-entropy alloy. JOM 67:2262–2270

    Article  CAS  Google Scholar 

  73. Haglund A, Koehler M, Catoor D, George EP, Keppens V (2015) Polycrystalline elastic moduli of a high-entropy alloy at cryogenic temperatures. Intermetallics 58:62–64

    Article  CAS  Google Scholar 

  74. Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George E (2015) Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd 623:348–353

    Article  CAS  Google Scholar 

  75. Lee C, Chang C, Chen Y, Yeh J, Shih H (2008) Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros Sci 50:2053–2060

    Article  CAS  Google Scholar 

  76. Qiu Y, Thomas S, Gibson M, Fraser H, Pohl K, Birbilis N (2018) Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr. Corros Sci 133:386–396

    Article  CAS  Google Scholar 

  77. Senkov ON, Wilks G, Scott J, Miracle DB (2011) Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19:698–706

    Article  CAS  Google Scholar 

  78. Wu Y, Liu WH, Wang XL, Ma D, Stoica AD, Nieh TG et al (2014) In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl Phys Lett 104

  79. Wu Y, Liu W, Wang X, Ma D, Stoica AD, Nieh T et al (2014) In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy. Appl Phys Lett 104:051910

    Article  CAS  Google Scholar 

  80. Lu Y, Dong Y, Guo S, Jiang L, Kang H, Wang T et al (2014) A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep 4:6200

    Article  CAS  Google Scholar 

  81. Tang Z, Gao MC, Diao H, Yang T, Liu J, Zuo T et al (2013) Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65:1848–1858

    Article  CAS  Google Scholar 

  82. Tung C-C, Yeh J-W, Shun T-T, Chen S-K, Huang Y-S, Chen H-C (2007) On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater Lett 61:1–5

    Article  CAS  Google Scholar 

  83. Zhang C, Zhang F, Chen S, Cao W (2012) Computational thermodynamics aided high-entropy alloy design. JOM 64:839–845

    Article  CAS  Google Scholar 

  84. Yang S, Lu J, Xing F, Zhang L, Zhong Y (2020) Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design—a case study with Al-Co-Cr-Fe-Ni system. Acta Mater

  85. Daniel B, Murthy V, Murty G (1997) Metal-ceramic composites via in-situ methods. J Mater Process Technol 68:132–155

    Article  Google Scholar 

  86. Ibrahim I, Mohamed F, Lavernia E (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26:1137–1156. https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  87. Kai X, Tian K, Wang C, Jiao L, Chen G, Zhao Y (2016) Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction. J Alloys Compd 668:121–127

    Article  CAS  Google Scholar 

  88. Kumar S, Chakraborty M, Sarma VS, Murty B (2008) Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265:134–142

    Article  CAS  Google Scholar 

  89. Tang Y, Chen Z, Borbely A, Ji G, Zhong S, Schryvers D et al (2015) Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy. Mater Charact 102:131–136

    Article  CAS  Google Scholar 

  90. Wang H, Li G, Zhao Y, Chen G (2010) In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites. Mater Sci Eng A 527:2881–2885

    Article  CAS  Google Scholar 

  91. Guo X, Guo Q, Nie J, Liu Z, Li Z, Fan G et al (2018) Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites. Mater Sci Eng A 711:643–649

    Article  CAS  Google Scholar 

  92. Li S, Kondoh K, Imai H, Chen B, Jia L, Umeda J et al (2016) Strengthening behavior of in situ-synthesized (TiC–TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des 95:127–132

    Article  CAS  Google Scholar 

  93. Ni D, Geng L, Zhang J, Zheng Z (2006) Effect of B4C particle size on microstructure of in situ titanium matrix composites prepared by reactive processing of Ti–B4C system. Scripta Mater 55:429–432

    Article  CAS  Google Scholar 

  94. Si C, Tang X, Zhang X, Wang J, Wu W (2017) Microstructure and mechanical properties of particle reinforced metal matrix composites prepared by gas-solid two-phase atomization and deposition technology. Mater Lett 201:78–81

    Article  CAS  Google Scholar 

  95. Chand S (2000) Review carbon fibers for composites. J Mater Sci 35:1303–1313. https://doi.org/10.1023/A:1004780301489

    Article  CAS  Google Scholar 

  96. Miracle D (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65:2526–2540

    Article  CAS  Google Scholar 

  97. Chen J, Niu P, Wei T, Hao L, Liu Y, Wang X et al (2015) Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J Alloys Compd 649:630–634

    Article  CAS  Google Scholar 

  98. Karthik G, Panikar S, Ram GJ, Kottada RS (2017) Additive manufacturing of an aluminum matrix composite reinforced with nanocrystalline high-entropy alloy particles. Mater Sci Eng A 679:193–203

    Article  CAS  Google Scholar 

  99. Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226

    Article  CAS  Google Scholar 

  100. Wang Z-W, Yuan Y-B, Zheng R-X, Ameyama K (2014) Microstructures and mechanical properties of extruded 2024 aluminum alloy reinforced by FeNiCrCoAl3 particles. Trans Nonferrous Metals Soc China 24:2366–2373

    Article  CAS  Google Scholar 

  101. Association A (1991) Standards for aluminum sand and permanent mold castings: aluminum association

  102. Apelian D (2008) Integrated computational materials engineering (ICME): a “model” for the future? JOM 60:9–10

    Article  Google Scholar 

  103. Horstemeyer MF (2009) Multiscale modeling: a review. In: Practical aspects of computational chemistry. Springer, pp 87–135

  104. Allison J, Li M, Wolverton C, Su X (2006) Virtual aluminum castings: an industrial application of ICME. JOM 58:28–35

    Article  CAS  Google Scholar 

  105. Gou G, Yang Y, Chen H (2014) An ICME approach for optimizing thin-welded structure design. Engineering 6:936–947

    Article  Google Scholar 

  106. Gong J, Snyder D, Kozmel T, Kern C, Saal JE, Berglund I et al (2017) ICME design of a castable, creep-resistant, single-crystal turbine alloy. JOM 69:880–885

    Article  Google Scholar 

  107. Lu P, Saal JE, Olson GB, Li T, Sahu S, Swanson OJ et al (2019) Computational design and initial corrosion assessment of a series of non-equimolar high entropy alloys. Scripta Mater 172:12–16

    Article  CAS  Google Scholar 

  108. Lu P, Saal JE, Olson GB, Li T, Swanson OJ, Frankel G et al (2018) Computational materials design of a corrosion resistant high entropy alloy for harsh environments. Scripta Mater 153:19–22

    Article  CAS  Google Scholar 

  109. Raturi A, Gurao N, Biswas K (2019) ICME approach to explore equiatomic and non-equiatomic single phase BCC refractory high entropy alloys. J Alloys Compd 806:587–595

    Article  CAS  Google Scholar 

  110. Asadikiya M, Drozd V, Yang S, Zhong Y (2020) Enthalpies and elastic properties of Ni-Co binary system by ab initio calculations and an energy comparison with the CALPHAD approach. Mater Today Commun 100905

  111. Asadikiya M, Foroughi P, Zhong Y (2018) Re-evaluation of the thermodynamic equilibria on the zirconia-rich side of the ZrO2-YO1.5 system. Calphad 61:264–274

    Article  CAS  Google Scholar 

  112. Asadikiya M, Rudolf C, Zhang C, Boesl B, Agarwal A, Zhong Y (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloys Compd 699:1022–1029

    Article  CAS  Google Scholar 

  113. Asadikiya M, Rudolf C, Zhang C, Boesl B, Zhong Y (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. In: Additive manufacturing and strategic technologies in advanced ceramics: ceramic transactions, pp 185–191

  114. Asadikiya M, Sabarou H, Chen M, Zhong Y (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6:17438–17445

    Article  CAS  Google Scholar 

  115. Asadikiya M, Zhang C, Rudolf C, Boesl B, Agarwal A, Zhong Y (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43:11182–11188

    Article  CAS  Google Scholar 

  116. Asadikiya M, Zhong Y (2018) Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals. J Mater Sci 53:1699–1709. https://doi.org/10.1007/s10853-017-1625-1

    Article  CAS  Google Scholar 

  117. Asadikiya M, Zhu Y, Gopalan S, Chuang Y-C, Tsai P-C, Nasara RN et al (2018) Integrated investigation of the Li4Ti5O12 phase stability. Ionics 24:707–713

    Article  CAS  Google Scholar 

  118. Darvish S, Asadikiya M, Yang M, Zhong Y (2018) The application of computational thermodynamics to the cathode-electrolyte in solid oxide fuel cells. In: Nanostructured materials for next-generation energy storage and conversion. Springer, pp 281–335

  119. Li N, Asadikiya M, Zhong Y, Singh P (2018) Evolution of porous YSZ surface morphology in YSZ-MnOx system. J Am Ceram Soc 101:4802–4811

    Article  CAS  Google Scholar 

  120. Smith A, Asadikiya M, Yang M, Chen J, Zhong Y (2019) An investigation of creep resistance in grade 91 steel through computational thermodynamics. Engineering

  121. Chen H-L, Mao H, Chen Q (2018) Database development and Calphad calculations for high entropy alloys: challenges, strategies, and tips. Mater Chem Phys 210:279–290

    Article  CAS  Google Scholar 

  122. Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T et al (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–2310

    Article  CAS  Google Scholar 

  123. Troparevsky MC, Morris JR, Kent PRC, Lupini AR, Stocks GM (2015) Criteria for predicting the formation of single-phase high-entropy alloys. Phys Rev X 5

  124. Senkov ON, Miller JD, Miracle DB, Woodward C (2015) Accelerated exploration of multi-principal element alloys for structural applications. Calphad 50:32–48

    Article  CAS  Google Scholar 

  125. Calvo-Dahlborg M, Brown SGR (2017) Hume-Rothery for HEA classification and self-organizing map for phases and properties prediction. J Alloys Compd 724:353–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Advanced Casting Research Center (ACRC) at Worcester Polytechnic Institute (WPI) and University of California, Irvine (UCI). Also, scientific and technical consultations with Dr. Libo Wang (of ACRC), Mr. Nicholas Sonnentag (of Oshkosh Corp.), and Mr. Lin Zhang (of FCA) are highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

MA: Writing-Original draft preparation, Writing-Review and Editing, Project Administration, Investigation, Visualization, Formal analysis, Validation. SY: Visualization, Investigation, Formal analysis. YZ: Investigation. CL: Investigation. DA: Writing-Review and Editing. YZ: Supervision, Writing-Review and Editing.

Corresponding author

Correspondence to Mohammad Asadikiya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadikiya, M., Yang, S., Zhang, Y. et al. A review of the design of high-entropy aluminum alloys: a pathway for novel Al alloys. J Mater Sci 56, 12093–12110 (2021). https://doi.org/10.1007/s10853-021-06042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06042-6

Navigation