Skip to main content
Log in

A phase-field study of the solidification process coupled with deformation

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-dendritic microstructures are generally obtained in metals after semi-solid deformation (deformation during solidification); however, dendritic growth is preferred without deformation. The fragmentation of dendrites is recognized as an essential contributing factor to non-dendritic microstructures. However, the underlying mechanism of fragmentation needs to be clarified in depth. It is infamously hard for researchers to carry out a direct observation of this process. Moreover, a comprehensive numerical survey of this process is not trivial. The present research reported a new method to model dendritic growth during semi-solid deformation. The motion and deformation of the solid coupled with liquid flow in the melt were treated as the two-phase flow because plastic materials could be formulated as non-Newtonian fluids. The vector-valued phase-field formulation and the self-constructed Navier–Stokes solver made it possible to simulate the growth, motion, deformation, fragmentation and agglomeration of two dendrites coupled with liquid flow in the melt. Computational results suggest that fragmentation can occur when the grain boundary is wet and penetrated by the melt, giving new supporting evidence to a previously proposed mechanism for the fragmentation of dendrites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Mohammed MN, Omar MZ, Salleh MS, Alhawari KS, Kapranos P (2013) Semisolid metal processing techniques for nondendritic feedstock production. Sci World J 2013:752175. https://doi.org/10.1155/2013/752175

    Article  CAS  Google Scholar 

  2. Flemings MC (1991) Behavior of metal alloys in the semisolid state. Metall Trans B 22(3):269–293. https://doi.org/10.1007/bf02651227

    Article  Google Scholar 

  3. Kirkwood DH (1994) Semisolid metal processing. Int Mater Rev 39(5):173–189. https://doi.org/10.1179/imr.1994.39.5.173

    Article  CAS  Google Scholar 

  4. Guo Y, Sun M, Xu B, Li D (2017) A method based on semi-solid forming for eliminating Laves eutectic phase of INCONEL 718 alloy. J Mater Process Technol 249:202–211. https://doi.org/10.1016/j.jmatprotec.2017.05.015

    Article  CAS  Google Scholar 

  5. Guo Y, Cao Y, Sun M, Xu B, Li D (2018) Effects of liquid fraction on the microstructure and mechanical properties in forge solidifying 12Cr1MoV steel. J Mater Process Technol 256:25–35. https://doi.org/10.1016/j.jmatprotec.2018.01.042

    Article  CAS  Google Scholar 

  6. Guo Y, Liu W, Sun M, Xu B, Li D (2018) A method based on semi-solid forming for eliminating coarse dendrites and shrinkage porosity of H13 tool steel. Metals 8(4):277. https://doi.org/10.3390/met8040277

    Article  CAS  Google Scholar 

  7. Liu W, Cao Y, Guo Y, Sun M, Xu B, Li D (2020) Solidification microstructure of Cr4Mo4V steel forged in the semi-solid state. J Mater Sci Technol 38:170–182. https://doi.org/10.1016/j.jmst.2019.07.049

    Article  Google Scholar 

  8. Fan Z (2002) Semisolid metal processing. Int Mater Rev 47(2):49–85. https://doi.org/10.1179/095066001225001076

    Article  CAS  Google Scholar 

  9. Chang Z, Su N, Wu Y, Lan Q, Peng L, Ding W (2020) Semisolid rheoforming of magnesium alloys: a review. Mater Des 195:108990. https://doi.org/10.1016/j.matdes.2020.108990

    Article  CAS  Google Scholar 

  10. Atkinson H (2005) Modelling the semisolid processing of metallic alloys. Prog Mater Sci 50(3):341–412. https://doi.org/10.1016/j.pmatsci.2004.04.003

    Article  CAS  Google Scholar 

  11. Neag A, Favier V, Bigot R, Atkinson HV (2016) Comparison between numerical simulation of semisolid flow into a die using FORGE© and in situ visualization using a transparent sided die. J Mater Process Technol 229:338–348. https://doi.org/10.1016/j.jmatprotec.2015.09.035

    Article  Google Scholar 

  12. Hu XG, Zhu Q, Atkinson HV, Lu HX, Zhang F, Dong HB, Kang YL (2017) A time-dependent power law viscosity model and its application in modelling semi-solid die casting of 319s alloy. Acta Mater 124:410–420. https://doi.org/10.1016/j.actamat.2016.11.031

    Article  CAS  Google Scholar 

  13. Kiuchi M, Kopp R (2002) Mushy/semi-solid metal forming technology—present and future. CIRP Ann Manuf Technol 51(2):653–670. https://doi.org/10.1016/s0007-8506(07)61705-3

    Article  Google Scholar 

  14. Zhao Y, Zhang B, Hou H, Chen W, Wang M (2019) Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process. J Mater Sci Technol 35(6):1044–1052. https://doi.org/10.1016/j.jmst.2018.12.009

    Article  Google Scholar 

  15. Zhang B, Zhao Y, Chen W, Xu Q, Wang M, Hou H (2019) Phase field simulation of dendrite sidebranching during directional solidification of Al–Si alloy. J Cryst Growth 522:183–190. https://doi.org/10.1016/j.jcrysgro.2019.06.027

    Article  CAS  Google Scholar 

  16. Zhang X, Kang J, Guo Z, Xiong S, Han Q (2018) Development of a Para-AMR algorithm for simulating dendrite growth under convection using a phase-field-lattice Boltzmann method. Comput Phys Commun 223:18–27. https://doi.org/10.1016/j.cpc.2017.09.021

    Article  CAS  Google Scholar 

  17. Wu J, Guo Z, Luo C (2018) Development of a parallel adaptive multigrid algorithm for solving the multi-scale thermal-solute 3D phase-field problems. Comput Mater Sci 142:89–98. https://doi.org/10.1016/j.commatsci.2017.09.045

    Article  Google Scholar 

  18. Yang C, Xu Q, Liu B (2017) GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy. Comput Mater Sci 136:133–143. https://doi.org/10.1016/j.commatsci.2017.04.031

    Article  CAS  Google Scholar 

  19. Xing H, Zhang L, Song K, Chen H, Jin K (2017) Effect of interface anisotropy on growth direction of tilted dendritic arrays in directional solidification of alloys: Insights from phase-field simulations. Int J Heat Mass Transf 104:607–614. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.096

    Article  CAS  Google Scholar 

  20. Tourret D, Song Y, Clarke AJ, Karma A (2017) Grain growth competition during thin-sample directional solidification of dendritic microstructures: a phase-field study. Acta Mater 122:220–235. https://doi.org/10.1016/j.actamat.2016.09.055

    Article  CAS  Google Scholar 

  21. Sakane S, Takaki T, Rojas R, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2017) Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model. J Cryst Growth 474:154–159. https://doi.org/10.1016/j.jcrysgro.2016.11.103

    Article  CAS  Google Scholar 

  22. Ohno M, Takaki T, Shibuta Y (2017) Numerical testing of quantitative phase-field models with different polynomials for isothermal solidification in binary alloys. J Comput Phys 335:621–636. https://doi.org/10.1016/j.jcp.2017.01.053

    Article  CAS  Google Scholar 

  23. Clarke AJ, Tourret D, Song Y, Imhoff SD, Gibbs PJ, Gibbs JW, Fezzaa K, Karma A (2017) Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: in situ X-ray imaging and phase-field simulations. Acta Mater 129:203–216. https://doi.org/10.1016/j.actamat.2017.02.047

    Article  CAS  Google Scholar 

  24. Tourret D, Karma A (2015) Growth competition of columnar dendritic grains: a phase-field study. Acta Mater 82:64–83. https://doi.org/10.1016/j.actamat.2014.08.049

    Article  CAS  Google Scholar 

  25. Ganesan S, Tobiska L (2009) A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J Comput Phys 228(8):2859–2873. https://doi.org/10.1016/j.jcp.2008.12.035

    Article  CAS  Google Scholar 

  26. Souli M, Zolesio JP (2001) Arbitrary Lagrangian–Eulerian and free surface methods in fluid mechanics. Comput Meth Appl Mech Eng 191(3):451–466. https://doi.org/10.1016/S0045-7825(01)00313-9

    Article  Google Scholar 

  27. Nithiarasu P (2005) An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme. Int J Numer Methods Fluids 48(12):1415–1428. https://doi.org/10.1002/fld.987

    Article  Google Scholar 

  28. Li X, Duan Q, Han X, Sheng DC (2008) Adaptive coupled arbitrary Lagrangian-Eulerian finite element and meshfree method for injection molding process. Int J Numer Methods Eng 73(8):1153–1180. https://doi.org/10.1002/nme.2117

    Article  Google Scholar 

  29. Sistaninia M, Phillion AB, Drezet JM, Rappaz M (2012) A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation. IOP conference series: materials science and engineering 33:012070. https://doi.org/10.1088/1757-899x/33/1/012070

    Article  Google Scholar 

  30. Sistaninia M, Phillion AB, Drezet JM, Rappaz M (2010) Simulation of semi-solid material mechanical behavior using a combined discrete/finite element method. Metall Mater Trans A Phys Metall Mater Sci 42(1):239–248. https://doi.org/10.1007/s11661-010-0491-0

    Article  CAS  Google Scholar 

  31. Phillion AB, Cockcroft SL, Lee PD (2009) Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182. Model Simul Mater Sci Eng 17(5):055011. https://doi.org/10.1088/0965-0393/17/5/055011

    Article  CAS  Google Scholar 

  32. Zhidan S, Marc B, Roland L, Guochao G (2017) Numerical simulation of mechanical deformation of semi-solid material using a level-set based finite element method. Model Simul Mater Sci Eng 25(6):065020

    Article  Google Scholar 

  33. Tong X, Beckermann C, Karma A, Li Q (2001) Phase-field simulations of dendritic crystal growth in a forced flow. Phys Rev E 63(6 Pt 1):061601. https://doi.org/10.1103/PhysRevE.63.061601

    Article  CAS  Google Scholar 

  34. Rojas R, Takaki T, Ohno M (2015) A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. J Comput Phys 298:29–40. https://doi.org/10.1016/j.jcp.2015.05.045

    Article  CAS  Google Scholar 

  35. Takaki T, Sato R, Rojas R, Ohno M, Shibuta Y (2018) Phase-field lattice Boltzmann simulations of multiple dendrite growth with motion, collision, and coalescence and subsequent grain growth. Comput Mater Sci 147:124–131. https://doi.org/10.1016/j.commatsci.2018.02.004

    Article  CAS  Google Scholar 

  36. Sakane S, Takaki T, Ohno M, Shibuta Y, Aoki T (2020) Two-dimensional large-scale phase-field lattice Boltzmann simulation of polycrystalline equiaxed solidification with motion of a massive number of dendrites. Comput Mater Sci 178:109639. https://doi.org/10.1016/j.commatsci.2020.109639

    Article  CAS  Google Scholar 

  37. Yamaguchi M, Beckermann C (2013) Simulation of solid deformation during solidification: Compression of a single dendrite. Acta Mater 61(11):4053–4065. https://doi.org/10.1016/j.actamat.2013.03.030

    Article  CAS  Google Scholar 

  38. Yamaguchi M, Beckermann C (2013) Simulation of solid deformation during solidification: shearing and compression of polycrystalline structures. Acta Mater 61(6):2268–2280. https://doi.org/10.1016/j.actamat.2012.12.047

    Article  CAS  Google Scholar 

  39. Lee S, Li Y, Shin J, Kim J (2017) Phase-field simulations of crystal growth in a two-dimensional cavity flow. Comput Phys Commun 216:84–94. https://doi.org/10.1016/j.cpc.2017.03.005

    Article  CAS  Google Scholar 

  40. Qi XB, Chen Y, Kang XH, Li DZ, Gong TZ (2017) Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Sci Rep 7:45770. https://doi.org/10.1038/srep45770

    Article  Google Scholar 

  41. Ren J-k, Chen Y, Cao Y-f, Sun M-y, Xu B, Li D-z (2020) Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models. J Mater Sci Technol 58:171–187. https://doi.org/10.1016/j.jmst.2020.05.005

    Article  Google Scholar 

  42. Subhedar A, Galenko PK, Varnik F (2020) Thin interface limit of the double-sided phase-field model with convection. Philos Trans R Soc A Math Phys Eng Sci 378(2171):20190540. https://doi.org/10.1098/rsta.2019.0540

    Article  Google Scholar 

  43. Cai B, Lee PD, Karagadde S, Marrow TJ, Connolley T (2016) Time-resolved synchrotron tomographic quantification of deformation during indentation of an equiaxed semi-solid granular alloy. Acta Mater 105:338–346. https://doi.org/10.1016/j.actamat.2015.11.028

    Article  CAS  Google Scholar 

  44. Park JJ, Oh SI (1990) Application of three dimensional finite element analysis to shape rolling processes. J Eng Ind Trans ASME 112(1):36. https://doi.org/10.1115/1.2899293

    Article  Google Scholar 

  45. Zienkiewicz OC, Godbole PN (1974) Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. Int J Numer Methods Eng 8(1):3–16. https://doi.org/10.1002/nme.1620080102

    Article  Google Scholar 

  46. Cai B, Karagadde S, Yuan L, Marrow TJ, Connolley T, Lee PD (2014) In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al–Cu alloy. Acta Mater 76:371–380. https://doi.org/10.1016/j.actamat.2014.05.035

    Article  CAS  Google Scholar 

  47. Zienkiewicz OC, Jain PC, Onate E (1978) Flow of solids during forming and extrusion—some aspects of numerical-solutions. Int J Solids Struct 14(1):15–38. https://doi.org/10.1016/0020-7683(78)90062-8

    Article  Google Scholar 

  48. Jiang ZY, Tieu AK (2000) Modelling of rolling of strips with longitudinal ribs by 3-D rigid visco-plastic finite element method. ISIJ Int 40(4):373–379. https://doi.org/10.2355/isijinternational.40.373

    Article  CAS  Google Scholar 

  49. Jiang ZY, Tieu AK (2001) A method to analyse the rolling of strip with ribs by 3D rigid visco-plastic finite element method. J Mater Process Technol 117(1):146–152. https://doi.org/10.1016/S0924-0136(01)01087-1

    Article  Google Scholar 

  50. Kim SY, Im YT (2002) Three-dimensional finite element analysis of non-isothermal shape rolling. J Mater Process Technol 127(1):57–63. https://doi.org/10.1016/S0924-0136(02)00256-X

    Article  Google Scholar 

  51. Tieu AK, Jiang ZY, Lu C (2002) A 3D finite element analysis of the hot rolling of strip with lubrication. J Mater Process Technol 125–126:638–644. https://doi.org/10.1016/S0924-0136(02)00371-0

    Article  Google Scholar 

  52. Zhang GL, Zhang SH, Liu JS, Zhang HQ, Li CS, Mei RB (2009) Initial guess of rigid plastic finite element method in hot strip rolling. J Mater Process Technol 209(4):1816–1825. https://doi.org/10.1016/j.jmatprotec.2008.04.038

    Article  Google Scholar 

  53. Hah Z-H, Youn S-K (2015) Eulerian analysis of bulk metal forming processes based on spline-based meshfree method. Finite Elem Anal Des 106:1–15. https://doi.org/10.1016/j.finel.2015.07.004

    Article  Google Scholar 

  54. Zhang H, Li X, Deng X, Reynolds AP, Sutton MA (2018) Numerical simulation of friction extrusion process. J Mater Process Technol 253:17–26. https://doi.org/10.1016/j.jmatprotec.2017.10.053

    Article  Google Scholar 

  55. Ren J-k, Chen Y, Xu B, Sun M-y, Li D-z (2019) A vector-valued phase field model for polycrystalline solidification using operator splitting method. Comput Mater Sci 163:37–49. https://doi.org/10.1016/j.commatsci.2019.02.045

    Article  CAS  Google Scholar 

  56. DEFORM. https://www.deform.com/. Accessed 27 February 2020

  57. Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kanschat G, Kronbichler M, Maier M, Pelteret J-P, Turcksin B, Wells D (2018) deal.II—an open source finite element library. https://www.dealii.org/. Accessed 20 September 2018

  58. Yoon Y-C, Schaefferkoetter P, Rabczuk T, Song J-H (2019) New strong formulation for material nonlinear problems based on the particle difference method. Eng Anal Bound Elem 98:310–327. https://doi.org/10.1016/j.enganabound.2018.10.015

    Article  Google Scholar 

  59. Yoon Y-C, Song J-H (2014) Extended particle difference method for moving boundary problems. Comput Mech 54(3):723–743. https://doi.org/10.1007/s00466-014-1029-x

    Article  Google Scholar 

  60. Yoon Y-C, Song J-H (2013) Extended particle difference method for weak and strong discontinuity problems: part II. Formulations and applications for various interfacial singularity problems. Comput Mech 53(6):1105–1128. https://doi.org/10.1007/s00466-013-0951-7

    Article  Google Scholar 

  61. Yoon Y-C, Song J-H (2014) Extended particle difference method for weak and strong discontinuity problems: part I Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities. Comput Mech 53(6):1087–1103. https://doi.org/10.1007/s00466-013-0950-8

    Article  Google Scholar 

  62. Dobravec T, Mavrič B, Šarler B (2020) Reduction of discretisation-induced anisotropy in the phase-field modelling of dendritic growth by meshless approach. Comput Mater Sci 172:109166. https://doi.org/10.1016/j.commatsci.2019.109166

    Article  Google Scholar 

  63. Almasi A, Beel A, Kim TY, Michopoulos JG, Song JH (2019) Strong-form collocation method for solidification and mechanical analysis of polycrystalline materials. J Eng Mech 145(10):17. https://doi.org/10.1061/(asce)em.1943-7889.0001665

    Article  Google Scholar 

  64. Song J-H, Fu Y, Kim T-Y, Yoon Y-C, Michopoulos JG, Rabczuk T (2017) Phase field simulations of coupled microstructure solidification problems via the strong form particle difference method. Int J Mech Mater Des 14(4):491–509. https://doi.org/10.1007/s10999-017-9386-1

    Article  CAS  Google Scholar 

  65. Fu Y, Michopoulos JG, Song J-H (2016) Bridging the multi phase-field and molecular dynamics models for the solidification of nano-crystals. J Comput Sci. https://doi.org/10.1016/j.jocs.2016.10.014

    Article  Google Scholar 

  66. Mramor K, Vertnik R, Šarler B (2014) Simulation of laminar backward facing step flow under magnetic field with explicit local radial basis function collocation method. Eng Anal Bound Elem 49:37–47. https://doi.org/10.1016/j.enganabound.2014.04.013

    Article  Google Scholar 

  67. Kosec G, Šarler B (2014) Simulation of macrosegregation with mesosegregates in binary metallic casts by a meshless method. Eng Anal Bound Elem 45:36–44. https://doi.org/10.1016/j.enganabound.2014.01.016

    Article  Google Scholar 

  68. Karma A, Rappel W-J (1998) Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E 57(4):4323–4349. https://doi.org/10.1103/PhysRevE.57.4323

    Article  CAS  Google Scholar 

  69. Yamaguchi M (2011) Phase-field simulation of dendritic growth under externally applied deformation. University of Iowa, Iowa

    Book  Google Scholar 

  70. Guo Z, Mi J, Grant PS (2012) An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution. J Comput Phys 231(4):1781–1796. https://doi.org/10.1016/j.jcp.2011.11.006

    Article  Google Scholar 

  71. Warren JA, Kobayashi R, Lobkovsky AE, Craig Carter W (2003) Extending phase field models of solidification to polycrystalline materials. Acta Mater 51(20):6035–6058. https://doi.org/10.1016/s1359-6454(03)00388-4

    Article  CAS  Google Scholar 

  72. Echebarria B, Folch R, Karma A, Plapp M (2004) Quantitative phase-field model of alloy solidification. Phys Rev E 70(6 Pt 1):061604. https://doi.org/10.1103/PhysRevE.70.061604

    Article  CAS  Google Scholar 

  73. Reed RC (2006) 3.1.2.3 Effects of quenching medium—liquid metal cooling, Table 3.1. In: Superalloys—fundamentals and applications. Cambridge University Press, Cambridge, p 137.

  74. Kobayashi R, Warren JA, Carter WC (1998) Mathematical models for solidification and grain boundary formation. ACH-Models Chem 135(3):287–295

    CAS  Google Scholar 

  75. Kobayashi R, Warren JA, Carter WC (1998) Vector-valued phase field model for crystallization and grain boundary formation. Phys D 119(3):415–423. https://doi.org/10.1016/S0167-2789(98)00026-8

    Article  CAS  Google Scholar 

  76. On̄ate E, Zienkiewicz OC (1983) A viscous shell formulation for the analysis of thin sheet metal forming. Int J Mech Sci 25(5):305–335. https://doi.org/10.1016/0020-7403(83)90011-5

    Article  Google Scholar 

  77. Bangerth W (2019) The step-22 tutorial program. https://www.dealii.org/current/doxygen/deal.II/step_22.html. Accessed 12 July 2019

  78. Borzacchiello D, Leriche E, Blottière B, Guillet J (2017) Box-relaxation based multigrid solvers for the variable viscosity Stokes problem. Comput Fluids 156:515–525. https://doi.org/10.1016/j.compfluid.2017.08.027

    Article  CAS  Google Scholar 

  79. Furuichi M, May DA, Tackley PJ (2011) Development of a Stokes flow solver robust to large viscosity jumps using a Schur complement approach with mixed precision arithmetic. J Comput Phys 230(24):8835–8851. https://doi.org/10.1016/j.jcp.2011.09.007

    Article  Google Scholar 

  80. May DA, Moresi L (2008) Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics. Phys Earth Planet Inter 171(1–4):33–47. https://doi.org/10.1016/j.pepi.2008.07.036

    Article  Google Scholar 

  81. Kronbichler M, Heister T, Bangerth W (2012) High accuracy mantle convection simulation through modern numerical methods. Geophys J Int 191(1):12–29. https://doi.org/10.1111/j.1365-246X.2012.05609.x

    Article  Google Scholar 

  82. https://ars.els-cdn.com/content/image/1-s2.0-S1005030220304059-mmc1.gif. Accessed November 27th 2020

  83. Abaqus. https://www.3ds.com/products-services/simulia/products/abaqus/. Accessed 27 February 2020

  84. Poirier DR, Geiger GH (2016) Table B.1. In: Transport phenomena in materials processing. Springer International Publishing, Cham, p 615. doi https://doi.org/10.1007/978-3-319-48090-9

  85. Binary Alloy Phase Diagrams (1986) vol 1. American Society for Metals, Ohio

    Google Scholar 

  86. Kurz W, Fisher D (1992) Fundamentals of solidification, 3rd edn. Trans Tech Publications Ltd, Netherlands

    Google Scholar 

  87. Heywood JG, Rannacher R, Turek S (1996) Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 22(5):325–352. https://doi.org/10.1002/(sici)1097-0363(19960315)22:5%3c325::aid-fld307%3e3.0.co;2-y

    Article  Google Scholar 

  88. Richter T (2013) A Fully Eulerian formulation for fluid–structure-interaction problems. J Comput Phys 233:227–240. https://doi.org/10.1016/j.jcp.2012.08.047

    Article  Google Scholar 

  89. Doherty RD, Lee HI, Feest EA (1984) Microstructure of stir-cast metals. Mater Sci Eng 65(1):181–189. https://doi.org/10.1016/0025-5416(84)90211-8

    Article  CAS  Google Scholar 

  90. Vogel A, Doherty RD, Cantor B (1978) Stir-cast microstructure and slow crack growth. Paper presented at the International Conference on Solidification, London,

  91. Vogel A (1978) Turbulent flow and solidification: stir-cast microstructure. Met Sci (UK) 12(12):576–578. https://doi.org/10.1179/msc.1978.12.12.576

    Article  Google Scholar 

  92. Qin RS, Wallach ER (2003) Phase-field simulation of semisolid metal processing under conditions of laminar and turbulent flow. Mater Sci Eng A Struct Mater Prop Microstruct Process 357(1–2):45–54. https://doi.org/10.1016/s0921-5093(03)00380-0

    Article  Google Scholar 

  93. Sun W, Xie Y, Yan R, Ma S, Dong H, Jing T (2019) A new efficient quantitative multi-component phase field: lattice boltzmann model for simulating Ti6Al4V solidified dendrite under forced flow. Metall Mater Trans B Proc Metall Mater Proc Sci 50(6):2487–2497. https://doi.org/10.1007/s11663-019-01669-y

    Article  CAS  Google Scholar 

  94. Zienkiewicz OC, Taylor RL, Nithiarasu P (2014) Incompressible Newtonian Laminar Flows. In: The finite element method for fluid dynamics. 7 edn. Butterworth-Heinemann, pp 127–161. doi https://doi.org/10.1016/b978-1-85617-635-4.00004-2

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program [Grant No. 2016YFB0300401, 2018YFA0702900], the National Natural Science Foundation of China [Grant No. 51774265, 51701225], the National Science and Technology Major Project of China [Grant No. 2019ZX06004010, 2017-VII-0008-0101], the Strategic Priority Research Program of the Chinese Academy of Sciences [Grant No. XDC04000000], LingChuang Research Project of China National Nuclear Corporation, Program of CAS Interdisciplinary Innovation Team, Youth Innovation Promotion Association, CAS, the Special Scientific Projects of Inner Mongolia. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

Jian-kun Ren wrote original draft, Yun Chen helped in writing–review and editing, Yan-fei Cao and Bin Xu validated the study, Ming-yue Sun administrated the project, and Dian-zhong Li supervised the study.

Corresponding author

Correspondence to Ming-yue Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data and code availability

The code required to reproduce these findings cannot be shared at this time as the code also forms part of an ongoing study.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (GIF 371 KB): impingement and separation among two bars (the first row shows region with ϕ > 0).

Supplementary file2 (GIF 147 KB): a plate forced to bend in pure melt with prescribed deformation.

10853_2021_6026_MOESM3_ESM.gif

Supplementary file3 (GIF 1289 KB): two dendrites grew, moved, bent, broke, and agglomerated in Al-Cu alloy (the second row shows region with ϕ > 0).

Appendices

Appendix 1 Solution sensitivity with respect to step and mesh sizes

The solution sensitivity with respect to different step and mesh sizes was investigated in this section. Initially, a seed was placed at the center of the domain with a size of 1.4 × 1.4 mm2, which contained supersaturated Al-1 wt.% Cu alloy (Ω = 0.35). Solidification took place isothermally all the time, and ε4 was set as 0.05. The mesh size near the interface (ϕ  = 0) was as 0.5 W0 (1.4 × 2–12 mm), and the step size was selected as 0.01 τ0. The result at t = 0.54 s is shown in Fig. 10(a1)–(a3).

Figure 10(b1) compares the contours of ϕ  = 0 by only changing the step sizes (0.01 τ0, 0.005 τ0 and 0.0025 τ0). Little difference could be found unless with an extremely close look (Fig. 10b2). This indicates a step size as small as 0.01 τ0 guarantees a valid phase-field computation with this supersaturation.

Figure 10
figure 10

A dendrite growing in a large domain (1.4 × 1.4 mm2; t = 0.54 s): (a1a3) the phase field computed with the step size and mesh size (near the interface) selected as 0.01 τ0 and 0.5 W0, respectively; (b1-b2) a comparison of the contours ϕ  = 0 by only changing step sizes (black: 0.01 τ0, red: 0.005 τ0, green: 0.0025 τ0). a2, a3 and b2 are the close-up images of the dashed box in a1, a2 and b1, respectively. The mesh near the interface is displayed in a3

Figure 10(a3) displays that the mesh size of 0.5 W0 ensures the phase field varies smoothly from solid to liquid. Figure 11 demonstrates the result with the mesh size a level coarser (1.4 × 2–11 mm = W0) near the interface (other conditions kept unchanged), and the phase field did not have a smooth transition across the interface any more (Fig. 11c).

Consequently, in the current study, the mesh near the interface kept a size of 0.5 W0. Considering the velocity computation (the step size Δt to solve Navier–Stokes equations should be limited by Δt ≤ h/|v| in every cell; h is the cell size [41]), the step size to solve phase-field equations should be adjusted dynamically (Sec. 2.4 in Ref. [41]) with an upper limit of 0.01 τ0 (this limit is based on the test of alloy. For the pure metal, the limit should be selected as 0.05 τ0, according to a similar test in Ref. [55]).

Figure 11
figure 11

A dendrite growing in a large domain (1.4 × 1.4 mm2; t = 0.54 s). The mesh size on the interface was W0. Other conditions kept the same as those of Fig. 10(a1a3). b and c are the close-up images of the dashed box in a and b, respectively. The mesh near the interface is shown in c

Appendix 2 Numerical procedures to solve Navier–Stokes equations

The techniques to solve v and p from Navier–Stokes equations [Eqs. (8)–(9)] have already been discussed in Ref. [41]. Unlike Ref. [41], in the present study, v and p were solved separately rather than as a whole to enable a simpler preconditioner [77].

Linear system and preconditioner (without scaling)

v and p are approximated by finite element method:

$${\varvec{v}}{ = }\sum\limits_{j = 1}^{{N_{{\varvec{v}}} }} {Z_{j}^{v} {\varvec{\psi}}_{j}^{v} } {,}$$
(25)
$$p = \sum\limits_{j = 1}^{{N_{p} }} {Z_{j}^{p} \psi_{j}^{p} } ,$$
(26)

where v is discretized as a solution vector Zv with Nv degrees of freedom (Zjv is the jth element in Zv with the shape function ψjv), and a similar definition is applicable for p. Equations (8)–(9) are discretized into a linear system [readers can refer to Eqs. (A.1), (A.5) and (A.10) in Ref. [41] for the space and time discretization]:

$$\left( {\begin{array}{*{20}c} {{\varvec{M}}^{vv} } & {{\varvec{M}}^{vp} } \\ {{\varvec{M}}^{pv} } & {{\varvec{M}}^{pp} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {{\varvec{Z}}^{v} } \\ {{\varvec{Z}}^{p} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {{\varvec{R}}^{v} } \\ {{\varvec{R}}^{p} } \\ \end{array} } \right),$$
(27)

with

$$M_{ij}^{vv} = \left( {\rho \frac{{{\varvec{\psi}}_{j}^{v} }}{\Delta t},{\varvec{\psi}}_{i}^{v} } \right)_{S} + \left( {\mu {\varvec{D}}\left( {{\varvec{\psi}}_{j}^{v} } \right),\nabla {\varvec{\psi}}_{i}^{v} } \right)_{S} {,}$$
(28)
$$M_{ij}^{vp} { = }M_{ji}^{pv} = - \left( {\psi_{j}^{p} ,\nabla \cdot {\varvec{\psi}}_{i}^{v} } \right)_{S} {,}$$
(29)
$$\begin{aligned} R_{i}^{v} & { = }\left( {\rho \frac{{{\varvec{v}}^{\rm old} }}{\Delta t},{\varvec{\psi}}_{i}^{v} } \right)_{S} + \left( {\rho {\varvec{f}},{\varvec{\psi}}_{i}^{v} } \right)_{S} \\ & {\kern 1pt} \quad - \left( {\rho {\varvec{v}}^{\rm old} \cdot \left( {\nabla {\varvec{v}}^{{\text{old}}} } \right),{\varvec{\psi}}_{i}^{v} } \right)_{S} + \left\langle {\mu {\varvec{N}} \cdot \left( {\nabla {\varvec{v}}^{{\text{old}}} } \right)^{\rm{T}} ,{\varvec{\psi}}_{i}^{v} } \right\rangle_{{\Gamma_{2} }} , \\ \end{aligned}$$
(30)

where Δt is the step size. vold is the velocity field that has been solved at the last step. (·, ·)S and < ·, · > Γ2 denote the integrations over the computational domain S and “do-nothing” boundary Γ2 (pm on Γ2 is set as zero), respectively [Eqs. (A.2)-(A.3) in Ref. [41]]. If v has Dirichlet condition on the whole boundary, pressure is only defined up to a constant [41, 80, 94]. Here Mpp, Rp arise from the zero-pressure constraint at one point; therefore, MppZp = 0. Hence, Eq. (27) can be rewritten as

$${\varvec{M}}^{vv} {\varvec{Z}}^{v} \user2{ + M}^{vp} {\varvec{Z}}^{p} = {\varvec{R}}^{v} {,}$$
(31)
$${\varvec{M}}^{pv} {\varvec{Z}}^{v} = {\varvec{R}}^{p} {.}$$
(32)

Equation (31) is equivalent to

$${\varvec{M}}^{pv} {\varvec{Z}}^{v} \user2{ + M}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{M}}^{vp} {\varvec{Z}}^{p} = {\varvec{M}}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{R}}^{v} .$$
(33)

Equations (32) and (33) lead to

$$\left[ {{\varvec{M}}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{M}}^{vp} } \right]{\varvec{Z}}^{p} = {\varvec{M}}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{R}}^{v} - {\varvec{R}}^{p} {.}$$
(34)

Schur complement reads

$${\varvec{S}} = {\varvec{M}}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{M}}^{vp} {.}$$
(35)

S−1 can be approximated by (S*)−1 as [41]

$${\varvec{S}}^{ - 1} \approx \left( {{\varvec{S}}^{*} } \right)^{ - 1} = \left( {{\varvec{L}}_{{\text{w}}}^{p} } \right)^{ - 1} + \left( {{\varvec{Q}}_{{\text{w}}}^{p} } \right)^{ - 1} ,$$
(36)

where

$$\left( {L_{{\text{w}}}^{p} } \right)_{ij} { = }\left( {\frac{\Delta t}{\rho }\nabla \psi_{j}^{p} ,\nabla \psi_{i}^{p} } \right)_{S} ,$$
(37)
$$\left( {Q_{{\text{w}}}^{p} } \right)_{ij} { = }\left( {\frac{1}{\mu }\psi_{j}^{p} ,\psi_{i}^{p} } \right)_{S} .$$
(38)

Lwp should be assembled with the zero-pressure constraint at one point in the domain to ensure it is positive definite. Equation (34) is hard to solve in a straightforward way [77]; thus, it is preconditioned with Eq. (36):

$$\left[ {{\varvec{S}}\left( {{\varvec{S}}^{*} } \right)^{{{ - }1}} } \right]{\varvec{Y}}^{p} = {\varvec{M}}^{pv} \left( {{\varvec{M}}^{vv} } \right)^{ - 1} {\varvec{R}}^{v} - {\varvec{R}}^{p} {.}$$
(39)

After Yp is solved with the CG solver from Eq. (39), Zp can be recovered from Yp:

$${\varvec{Z}}^{p} = \left( {{\varvec{S}}^{*} } \right)^{ - 1} {\varvec{Y}}^{p} ,$$
(40)

and then

$${\varvec{Z}}^{v} = \left( {{\varvec{M}}^{vv} } \right)^{ - 1} \left( {{\varvec{R}}^{v} - {\varvec{M}}^{vp} {\varvec{Z}}^{p} } \right).$$
(41)

Diagonal scaling

In the current study, the procedures described in “Linear system and preconditioner (without scaling)” of Appendix 2 cannot be directly applied. It is impractical to obtain the exact inverse of a matrix; thus, (Mvv)−1, (Lwp)−1 and (Qwp)−1 are represented by Cholesky decomposition. However, the variable viscosity in Eqs. (28) and (38) indicates that there are variations of orders of magnitude inside Mvv and Qwp. To guarantee effective decomposition, Mvv and Qwp are scaled with their diagonal elements, and the corresponding scaling vectors are defined as

$$d_{i}^{v} = \sqrt {M_{ii}^{vv} } {,}$$
(42)
$$d_{i}^{p} = \sqrt {\left( {Q_{{\text{w}}}^{p} } \right)_{ii} } ,$$
(43)

respectively, with a diagonal matrix

$${{\varvec{\Lambda}}}^{p} = {\text{diag}}\left( {d_{1}^{p} , \ldots ,d_{{N_{p} }}^{p} } \right).$$
(44)

The scaled linear system is

$$\left( {\begin{array}{*{20}c} {{\varvec{M}}_{{\text{I}}}^{vv} } & {{\varvec{M}}_{{\text{I}}}^{vp} } \\ {{\varvec{M}}_{{\text{I}}}^{pv} } & {{\varvec{M}}_{{\text{I}}}^{pp} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {{\varvec{Z}}_{{\text{I}}}^{v} } \\ {{\varvec{Z}}_{{\text{I}}}^{p} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {{\varvec{R}}_{{\text{I}}}^{v} } \\ {{\varvec{R}}_{{\text{I}}}^{p} } \\ \end{array} } \right),$$
(45)

where

$$\left( {M_{{\text{I}}}^{vv} } \right)_{ij} = \frac{{M_{ij}^{vv} }}{{d_{i}^{v} d_{j}^{v} }},$$
(46)
$$\left( {M_{{\text{I}}}^{vp} } \right)_{ij} = \left( {M_{{\text{I}}}^{pv} } \right)_{ji} = \frac{{M_{ij}^{vp} }}{{d_{i}^{v} d_{j}^{p} }},$$
(47)
$$\left( {M_{{\text{I}}}^{pp} } \right)_{ij} = \frac{{M_{ij}^{pp} }}{{d_{i}^{p} d_{j}^{p} }},$$
(48)
$$\left( {R_{{\text{I}}}^{v} } \right)_{i} = \frac{{R_{i}^{v} }}{{d_{i}^{v} }},$$
(49)
$$\left( {R_{{\text{I}}}^{p} } \right)_{i} = \frac{{R_{i}^{p} }}{{d_{i}^{p} }}.$$
(50)

Subsequently, Eqs. (39)–(41) become

$$\left[ {{\varvec{S}}_{{\text{I}}} \left( {{\varvec{S}}_{{\text{I}}}^{*} } \right)^{{{ - }1}} } \right]{\varvec{Y}}_{{\text{I}}}^{p} = {\varvec{M}}_{{\text{I}}}^{pv} \left( {{\varvec{M}}_{{\text{I}}}^{vv} } \right)^{ - 1} {\varvec{R}}_{{\text{I}}}^{v} - {\varvec{R}}_{{\text{I}}}^{p} {,}$$
(51)
$${\varvec{Z}}_{{\text{I}}}^{p} = \left( {{\varvec{S}}_{{\text{I}}}^{*} } \right)^{ - 1} {\varvec{Y}}_{{\text{I}}}^{p} {,}$$
(52)
$${\varvec{Z}}_{{\text{I}}}^{v} = \left( {{\varvec{M}}_{{\text{I}}}^{vv} } \right)^{ - 1} \left( {{\varvec{R}}_{{\text{I}}}^{v} - {\varvec{M}}_{{\text{I}}}^{vp} {\varvec{Z}}_{{\text{I}}}^{p} } \right).$$
(53)

In Eq. (51),

$${\varvec{S}}_{{\text{I}}} = {\varvec{M}}_{{\text{I}}}^{pv} \left( {{\varvec{M}}_{{\text{I}}}^{vv} } \right)^{ - 1} {\varvec{M}}_{{\text{I}}}^{vp} {,}$$
(54)
$$\left( {{\varvec{S}}_{{\text{I}}}^{*} } \right)^{ - 1} = {{\varvec{\Lambda}}}^{p} \left( {{\varvec{L}}_{{\text{w}}}^{p} } \right)^{ - 1} {{\varvec{\Lambda}}}^{p} + \left( {{\varvec{Q}}_{{\text{w}}}^{p} } \right)_{{\text{I}}}^{ - 1} {,}$$
(55)
$$\left( {\left( {{\varvec{Q}}_{{\text{w}}}^{p} } \right)_{{\text{I}}} } \right)_{ij} { = }\frac{{\left( {Q_{{\text{w}}}^{p} } \right)_{ij} }}{{d_{i}^{p} d_{j}^{p} }}.$$
(56)

where (MIvv)−1, (Lwp)−1 and (Qwp)I−1 are represented by Cholesky decomposition. Zv and Zp can be recovered by

$$Z_{i}^{v} = \frac{{\left( {Z_{{\text{I}}}^{v} } \right)_{i} }}{{d_{i}^{v} }},$$
(57)
$$Z_{i}^{p} = \frac{{\left( {Z_{{\text{I}}}^{p} } \right)_{i} }}{{d_{i}^{p} }}.$$
(58)

Appendix 3 Principal symbols

Matrices, vectors, tensors are in boldface, while scalars are in lightface.

ϕ:

Phase field

α:

Orientation field

α4:

4α

c:

Solute concentration field

a1, a2:

Constants in phase-field model (Table 2)

as:

Anisotropy [Eq. (5)]

T:

Temperature

d0:

Capillary length (Table 1)

W0:

Spatial scale

τ0:

Time scale

τϕ:

Phase-field relaxation time (Table 1)

τα:

Orientation relaxation time

UT:

Dimensionless temperature for pure metal (Table 1)

Uc:

Dimensionless concentration for alloy [Eq. (3)]

Y:

Thermal/solutal driving force (Table 1)

λ:

Coupling constant

ω:

Rotation rate

F = (F1, F2):

Vector-valued phase field [Eq. (7)]

W:

Diffuse interface thickness

P:

Mobility function [Eq. (6)]

v:

Velocity

p:

Pressure

σm:

Mean stress

pm:

Mean pressure across the “do-nothing” boundary

t:

Time

c:

Initial concentration in the melt

Tl–s:

Freezing range

ρ:

Density

I:

Unit diagonal tensor

f:

External force acting on a unit mass [Eq. (8)]

fs:

Local solid fraction: fs = (1 + ϕ)/2

\(\dot{\boldsymbol\varepsilon }\):

Strain rate [Eq. (24)].

\(\dot{\varepsilon }_{{{\text{eq}}}}\) , σeq:

Equivalent strain rate [Eq. (12)] and stress [Eq. (15)]

μ:

Dynamic viscosity

μl, μs, μs–l:

Dynamic viscosity in the liquid, solid [Eq. (14)], and within the s-l interface [Eq. (16)]

σy:

Yield strength

σ:

Stress tensor

s:

Deviatoric stress tensor

μmax(s), μmax(s-l) :

Cutoff viscosity in the solid and within the s-l interface [Eq. (17)]

ε4:

Anisotropic strength

Ω:

Supersaturation

θ:

Dimensionless undercooling for the alloy

Tm:

Melting point

D:

Diffusivity (Table 1)

DT:

Thermal diffusivity

Dcl:

Solute diffusivity in the liquid

ν:

Kinematic viscosity

k:

Solute partition coefficient

m :

Liquidus slope

μc, η, β, s:

Constants in the phase-field model, listed in Table 2

Γ:

Gibbs-Thomson coefficient

L:

Volumetric latent heat

cp:

Volumetric specific heat

σsl, σgb:

Interfacial tensions on the s-l interface and grain boundary

ψjv, ψjp:

Shape functions for the jth degree of freedom in the finite element space of v and p [Eqs. (25)–(26)]

Zv, Zp:

Solution vectors of v and p [Eqs. (25)–(26)]

Nv:

The number of degrees of freedom in the finite element space of v

ZIv, ZIp:

Scaled Zv, Zp [Eqs. (52)–(53)]

dv, dp:

Scaling vectors [Eqs. (42)–(43)]

Λp:

Diagonal matrix constructed by dp [Eq. (44)]

Mvv, Mvp, Mpv, Mpp:

Blocks in linear system Eq. (27) [Eqs. (28)–(29)]

MIvv, MIvp, MIpv, MIpp:

Scaled Mvv, Mvp, Mpv, Mpp [Eqs. (46)–(47)]

Rv, Rp:

Right hand sides in linear system Eq. (27)

RIv, RIp :

Scaled Rv, Rp [Eqs. (49)–(50)]

S:

Schur complement [Eq. (35)]

(S*)−1:

Approximation to S-1 [Eq. (36)]

Lwp, Qwp:

Matrices used to evaluate S* [Eqs. (37)–(38)]

(Qwp)I:

Scaled Qwp [Eq. (56)]

Yp:

Solution vector in linear system Eq. (39)

YIp:

Solution vector in scaled linear system Eq. (51)

SI:

Scaled Schur complement [Eq. (54)]

(SI*)-1:

Approximation to (SI)-1 [Eq. (55)]

Δt:

Step size for solving the Navier–Stokes equations

S:

Computational domain

Γ2:

“Do-nothing” boundary

N:

Outward unit normal to the boundary

(·, ·)S, <·, ·>Γ2:

Integration over the domain and “do-nothing” boundary

D(·):

Operator defined by Eq. (11)

::

Double dot product between two second-order tensors [Eq. (13)]

(x1, x2), (X1, X2):

Axes of the local and global frame (Fig. 1 in Ref. [55])

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Jk., Chen, Y., Cao, Yf. et al. A phase-field study of the solidification process coupled with deformation. J Mater Sci 56, 12455–12474 (2021). https://doi.org/10.1007/s10853-021-06026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06026-6

Navigation