Skip to main content

Advertisement

Log in

Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rational design of heterojunction structure as photoanode provides an effective route to improve the efficiency of photoelectrochemical (PEC) water splitting. Herein, we design and fabricate CdS nanoparticle/TiO2 nanorod array heterostructures through a facile hydrothermal process. With the assistance of a ZnO interlayer between CdS and TiO2 prepared by atomic layer deposition technique followed by microwave hydrothermal reaction, uniform Zn-doped CdS/TiO2 shell/core arrays are attained. Via tuning the ZnO thickness and CdS deposition time, the optimum Zn-doped CdS/TiO2 sample exhibits a superior PEC performance with a photocurrent of 3.38 mA cm−2 at 1.23 V versus RHE, which is 6.0 and 1.4 times higher than pristine TiO2 and CdS/TiO2, respectively. Moreover, the corresponding onset potential of Zn-doped CdS/TiO2 is obviously shifted toward the negative potential direction by 450 and 130 mV, respectively. The performance enhancement is attributed to the improved electron–hole transport and separation ability, stronger light absorption and higher photoactivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Yilmaz F, Balta MT, Selbaş R (2016) A review of solar based hydrogen production methods. Renew Sustain Energy Rev 56:171–178

    Article  CAS  Google Scholar 

  2. Wang J, Xu F, Jin H, Chen Y, Wang Y (2017) Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 29:1605838

    Article  Google Scholar 

  3. Willkomm J, Orchard KL, Reynal A, Pastor E, Durrant JR, Reisner E (2016) Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem Soc Rev 45:9–23

    Article  CAS  Google Scholar 

  4. Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:1–13

    Article  Google Scholar 

  5. Niu F, Wang D, Li F, Liu Y, Shen S, Meyer TJ (2020) Hybrid photoelectrochemical water splitting systems: from interface design to system assembly. Adv Energy Mater 10:1900399

    Article  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  7. Cui H, Zhu G, Xie Y, Zhao W, Yang C, Lin T, Gu H, Huang F (2015) Black nanostructured Nb2O5 with improved solar absorption and enhanced photoelectrochemical water splitting. J Mater Chem A 3:11830–11837

    Article  CAS  Google Scholar 

  8. Ma Y, Hu Y (2020) Efficient Ni(OH)2/WO3 photoanode for photoelectrocatalytic water splitting at low bias. J Phys Chem C 124:19447–19456

    Article  CAS  Google Scholar 

  9. Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994

    Article  CAS  Google Scholar 

  10. Wu J, Huang P, Fan H, Wang G, Liu W (2020) Metal-organic framework-derived p-Cu2O/n-Ce-Fe2O3 heterojunction nanorod photoanode coupling with a FeOOH cocatalyst for high-performance photoelectrochemical water oxidation. ACS Appl Mater Interfaces 12:30304–30312

    Article  CAS  Google Scholar 

  11. Ge M, Li Q, Cao C, Huang J, Li S, Zhang S, Chen Z, Zhang K, Al-Deyab SS, Lai Y (2017) One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv Sci 4:1600152

    Article  Google Scholar 

  12. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  13. Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, Lei Y (2016) Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Adv Energy Mater 6:1501496

    Article  Google Scholar 

  14. Zhang X, Liu Y, Lee ST, Yang S, Kang Z (2014) Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci 7:1409–1419

    Article  CAS  Google Scholar 

  15. Hao C, Wang W, Zhang R, Zou B, Shi H (2018) Enhanced photoelectrochemical water splitting with TiO2@Ag2O nanowire arrays via pn heterojunction formation. Sol Energy Mater Sol Cells 174:132–139

    Article  CAS  Google Scholar 

  16. Wang M, Pyeon M, Gönüllü Y, Kaouk A, Shen S, Guo L, Mathur S (2015) Constructing Fe2O3/TiO2 core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale 7:10094–10100

    Article  CAS  Google Scholar 

  17. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co-Pi nanowire array photoanode enhanced with Co-Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25:5706–5713

    Article  CAS  Google Scholar 

  18. Li J, Cushing SK, Zheng P, Senty T, Meng F, Bristow AD, Manivannan A, Wu N (2014) Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J Am Chem Soc 136:8438–8449

    Article  CAS  Google Scholar 

  19. Su F, Lu J, Tian Y, Ma X, Gong J (2013) Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Phys Chem Chem Phys 15:12026–12032

    Article  CAS  Google Scholar 

  20. Yao L, Wei D, Ni Y, Yan D, Hu C (2016) Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: highly efficient visible light-induced H2-generation. Nano Energy 26:248–256

    Article  CAS  Google Scholar 

  21. Li K, Chen R, Li S, Xie S, Dong L, Kang Z, Bao J, Lan Y (2016) Engineering Zn1-xCdxS/CdS heterostructures with enhanced photocatalytic activity. ACS Appl Mater Interfaces 8:14535–14541

    Article  Google Scholar 

  22. Chen J, Chen J, Li Y (2017) Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J Mater Chem A 5:24116–24125

    Article  CAS  Google Scholar 

  23. Liu M, Jing D, Zhou Z, Guo L (2013) Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat Commun 4:1–8

    Google Scholar 

  24. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J (2013) Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity. ACS Catal 3:882–889

    Article  CAS  Google Scholar 

  25. Kozlova EA, Kurenkova AY, Semeykina VS, Parkhomchuk EV, Cherepanova SV, Gerasimov EY, Saraev AA, Kaichev VV, Parmon VN (2015) Effect of titania regular macroporosity on the photocatalytic hydrogen evolution on Cd1-xZnxS/TiO2 catalysts under visible light. ChemCatChem 7:4108–4117

    Article  CAS  Google Scholar 

  26. Yang F, Yan N, Huang S, Sun Q, Zhang L, Yu Y (2012) Zn-doped CdS nanoarchitectures prepared by hydrothermal synthesis: mechanism for enhanced photocatalytic activity and stability under visible light. J Phys Chem C 116:9078–9084

    Article  CAS  Google Scholar 

  27. Luo M, Liu Y, Hu J, Liu H, Li J (2012) One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability. ACS Appl Mater Interfaces 4:1813–1821

    Article  CAS  Google Scholar 

  28. Wakerley DW, Kuehnel MF, Orchard KL, Ly KH, Rosser TE, Reisner E (2017) Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat Energy 2:1–9

    Article  Google Scholar 

  29. Zou JP, Lei SL, Yu J, Luo SL, Luo XB, Tang XH, Dai WL, Sun J, Guo GC, Au CT (2014) Highly efficient and stable hydrogen evolution from water with CdS as photosensitizer-a noble-metal-free system. Appl Catal B-Environ 150:466–471

    Article  Google Scholar 

  30. Lim YR, Song W, Han JK, Lee YB, Kim SJ, Myung S, Lee SS, An KS, Choi CJ, Lim J (2016) Wafer-Scale, Homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv Mater 28:5025–5030

    Article  CAS  Google Scholar 

  31. Wu D, Wang W, Ng TW, Huang G, Xia D, Yip HY, Lee HK, Li G, An T, Wong PK (2016) Visible-light-driven photocatalytic bacterial inactivation and the mechanism of zinc oxysulfide under LED light irradiation. J Mater Chem A 4:1052–1059

    Article  CAS  Google Scholar 

  32. Gupta S, Whittles TJ, Batra Y, Satsangi V, Krishnamurthy S, Dhanak VR, Mehta BR (2016) A low-cost, sulfurization free approach to control optical and electronic properties of Cu2ZnSnS4 via precursor variation. Sol Energy Mater Sol Cells 157:820–830

    Article  CAS  Google Scholar 

  33. Wang Y, Yang X, Ye T, Xu C, Xia F, Meng D (2017) Comparative study of structural and photocatalytic properties of M-doped (M = Ce3+, Zn2+, Cu2+) dendritic-like CdS. J Electron Mater 46:1598–1606

    Article  CAS  Google Scholar 

  34. Liu Q, Wu F, Cao F, Chen L, Xie X, Wang W, Tian W, Li L (2015) A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res 8:3524–3534

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the Natural Science Foundation of the Jiangsu Province (BK20200877), College Students' Innovation and Entrepreneurship Training Program of the Jiangsu Province (202013984007Y).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xichen Yu or Fengren Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Xing, Q., Zhang, X. et al. Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS. J Mater Sci 56, 11059–11070 (2021). https://doi.org/10.1007/s10853-021-06008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06008-8

Navigation