Skip to main content
Log in

Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, two kinds of ZnO/Cu2S core/shell nanorods (NRs) have been successfully synthesized from ZnO NRs for photoelectrochemical (PEC) water splitting by a versatile hydrothermal chemical conversion method (H-ZnO/Cu2S core/shell NRs) and successive ionic layer adsorption and reaction method (S-ZnO/Cu2S core/shell NRs), respectively. The photoelectrode is composed of a core/shell structure where the core portion is ZnO NRs and the shell portion is Cu2S nanoparticles sequentially located on the surface. The ZnO NRs array provides a fast electron transport pathway due to its high electron mobility properties. The optical property of both two kinds of core/shell NRs was characterized, and enhanced absorption spectrum was discovered. Our PEC system produced very high photocurrent density and photoconversion efficiency under 1.5 AM irradiation for hydrogen generation. On the basis of a versatile chemical conversion process based on the ion-by-ion growth mechanism, H-ZnO/Cu2S core/shell NRs exhibit a much higher photocatalytic activity than S-ZnO/Cu2S core/shell NRs. The photocurrent density and photoconversion efficiency of H-ZnO/Cu2S core/shell NRs are up to 20.12 mA cm−2 at 0.85 V versus SCE and 12.81 % at 0.40 V versus SCE, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

    Article  Google Scholar 

  2. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  Google Scholar 

  3. Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  Google Scholar 

  4. Li YB, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131

    Article  Google Scholar 

  5. Fujishima Akira, Honda Kenichi (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  6. Pu YC, Wang GM, Chang KD, Ling YC, Lin YK, Fitzmorris BC, Liu CM, Lu XH, Tong YX, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV–visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

    Article  Google Scholar 

  7. In SC, Chen ZB, Arnold JF, Dong RK, Pratap MR, Thomas FJ, Zheng XL (2011) Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11:4978–4984

    Article  Google Scholar 

  8. Guo KY, Liu ZF, Zhou CL, Han JH, Zhao YF, Liu ZC, Li YJ, Cui T, Wang B, Zhang J (2014) Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance. Appl Catal B 154:27–35

    Article  Google Scholar 

  9. Wolcott A, Smith WA, Kuyke TR, Zhao YP, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  Google Scholar 

  10. Sivula K, Formal FL, Grätzel M (2009) WO3–Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chem Mater 21:2862–2867

    Article  Google Scholar 

  11. Hong SJ, Lee S, Jang JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    Article  Google Scholar 

  12. Weinhardt L, Blum M, Bär M (2008) Electronic surface level positions of WO3 thin films for photoelectrochemical hydrogen production. J Phys Chem C 112:3078–3082

    Article  Google Scholar 

  13. Paracchino A, Laporte V, Sivula K (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  Google Scholar 

  14. Tada H, Kiyonaga T, Naya SI (2009) Rational design and applications of highly efficient reaction systems photocatalyzed by noble metal nanoparticle-loaded titanium(IV) dioxide. Chem Soc Rev 38:1849–1858

    Article  Google Scholar 

  15. Chung J, Myoung J, Oh J, Lim S (2010) Synthesis of a ZnS shell on the ZnO nanowire and its effect on the nanowire-based dye-sensitized solar cells. J Phys Chem C 114:21360–21365

    Article  Google Scholar 

  16. Beek WJE, Wienk MM, Janssen RAJ (2006) Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv Funct Mater 16:1112–1116

    Article  Google Scholar 

  17. Dick KA, Deppert K, Larsson MW, Martensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384

    Article  Google Scholar 

  18. Zhang QE, Chou TP, Russo B, Jenekhe SA, Cao GZ (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18:1654–1660

    Article  Google Scholar 

  19. Gonzalez VI, Lira CM (2009) Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy Environ Sci 2:19–34

    Article  Google Scholar 

  20. Khanchandani S, Kundu S, Patra A, Ganguli AK (2012) Shell thickness dependent photocatalyic properties of ZnO/CdS core-shell nanorods. J Phys Chem C 116:23653–23662

    Article  Google Scholar 

  21. Plank NV, Snaith HJ, Ducati C, Bendall JS, Schmidt-mende L, Welland ME (2008) A simple low temperature synthesis route for ZnO–MgO core-shell nanowires. Nanotechnology 19:1–8

    Google Scholar 

  22. Wang K, Chen JJ, Zhou WL, Zhang Y, Yan YF, Pern J, Mascarenhas A (2008) Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv Mater 20:3248–3253

    Article  Google Scholar 

  23. Xiu FX, Yang Z, Mandalapu LJ, Zhao DT, Liu JL, Beyermann WP (2005) High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  24. Wang EJ, He T, Zhao LS, Chen YM, Cao YM, Cao YA (2011) Improved visible light photocatalytic activity of titania doped with tin and nitrogen. J Mater Chem 21:144–150

    Article  Google Scholar 

  25. Liu CC, Liu ZF, Li JW, Han JH, Wang Y, Liu ZC, Ya J (2013) Cu-doping ZnO/ZnS nanorods serve as the photoanode to enhance photocurrent and conversion efficiency. Microelectron Eng 103:12–16

    Article  Google Scholar 

  26. Yang LL, Zhang ZQ, Yang JH, Yan YS, Sun YF, Cao J, Gao M, Wei MB, Lang JH, Liu ZF, Wang Z (2012) Effect of tube depth on the photovoltaic performance of CdS quantum dots sensitized ZnO nanotubes solar cells. J Alloy Compd 543:58–64

    Article  Google Scholar 

  27. Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188

    Article  Google Scholar 

  28. Reiss P, Protière M, Li L (2009) Core/shell semiconductor nanocrystals. Small 2:154–168

    Article  Google Scholar 

  29. Liu CC, Liu ZF, Li YB, Liu ZC, Wang Y, Ya J, Gargiulo N, Caputo D (2012) Enhanced visible-light-responsive photocatalytic property of CdS and PbS sensitized ZnO nanocomposite photocatalysts. Mater Sci Eng B 177:570–574

    Article  Google Scholar 

  30. Li YX, Hu YF, Peng SQ, Lu GX, Li SB (2009) Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J Phys Chem C 113:9352–9358

    Article  Google Scholar 

  31. Gorai S, Ganguli D, Chaudhuri S (2004) Synthesis of 1D Cu2S with tailored morphology via single and mixed ionic surfactant templates. Mater Chem Phys 88:383–387

    Article  Google Scholar 

  32. Lai YK, Lin ZQ, Zheng DJ, Chi LF, Du RG, Lin CJ (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotubes array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181

    Article  Google Scholar 

  33. Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19:5945–5951

    Article  Google Scholar 

  34. Liu ZF, Ya J, Xin Y (2009) Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers. Appl Surf Sci 255:6415–6420

    Article  Google Scholar 

  35. Zhang ZH, Wang P (2012) Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ Sci 5:6506–6512

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Research Foundation for Hubei Provincial Key Laboratory of Green Materials for Light Industry (No. 20130108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuhuang Chen or Zhifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Chen, X., Han, J. et al. Synthesis of ZnO/Cu2S core/shell nanorods and their enhanced photoelectric performance. J Sol-Gel Sci Technol 72, 92–99 (2014). https://doi.org/10.1007/s10971-014-3426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3426-1

Keywords

Navigation