Skip to main content
Log in

Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CuSe monolayer possesses intrinsically patterned triangular nanopores with uniform size and can serve as a template for selective adsorptions for molecules and nanoclusters. Here, we prepare the CuSe monolayer on Cu(111) substrate by molecular beam epitaxy method and characterize CuSe monolayer in detail by bond-resolved scanning tunneling microscopy and non-contact atomic force microscopy. The results further confirm the honeycomb feature and triangular nanopores existence of CuSe monolayer. In addition, scanning tunneling spectroscopy measurements reveal the semiconducting features of CuSe monolayer with a band gap of 2.40 eV. This work helps to understand the structure and electronic properties of those intrinsically patterned two-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lüpke F, Waters D, de la Barrera SC et al (2020) Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nat Phys 16:526–530. https://doi.org/10.1038/s41567-020-0816-x

    Article  CAS  Google Scholar 

  2. Oh E, Gye G, Yeom HW (2020) Defect-selective charge-density-wave condensation in 2H-NbSe2. Phys Rev Lett 125:036804. https://doi.org/10.1103/PhysRevLett.125.036804

    Article  CAS  Google Scholar 

  3. Li G, Zhang YY, Guo H et al (2018) Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds. Chem Soc Rev 47:6073–6100. https://doi.org/10.1039/c8cs00286j

    Article  CAS  Google Scholar 

  4. Qian K, Gao L, Chen X et al (2020) Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition. Adv Mater 32:1908314. https://doi.org/10.1002/adma.201908314

    Article  CAS  Google Scholar 

  5. Meng L, Wang Y, Zhang L et al (2013) Buckled silicene formation on Ir(111). Nano Lett 13:685–690. https://doi.org/10.1021/nl304347w

    Article  CAS  Google Scholar 

  6. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377. https://doi.org/10.1038/nnano.2014.35

    Article  CAS  Google Scholar 

  7. Bodnar IV, Pauliukavets SA, Trukhanov SV, Fedotova YA (2012) Mössbauer and magnetic studies of the ternary compound FeIn2Se4. Semicond 46:606–610. https://doi.org/10.1134/S1063782612050077

    Article  CAS  Google Scholar 

  8. Trukhanov SV, Bodnar IV, Zhafar MA (2015) Magnetic and electrical properties of (FeIn2S4)1–x(CuIn5S8)x solid solutions. J Magn Magn Mater 379:22–27. https://doi.org/10.1016/j.jmmm.2014.10.120

    Article  CAS  Google Scholar 

  9. Turchenko VA, Trukhanov AV, Bobrikov IA, Trukhanov SV, Balagurov AM (2015) Investigation of the crystal and magnetic structures of BaFe12-xAlxO19 solid solutions (x = 0.1-1.2). Crystallogr Rep 60:629–635. https://doi.org/10.1134/s1063774515030220

    Article  CAS  Google Scholar 

  10. Kozlovskiy AL, Kenzhina IE, Zdorovets MV (2020) FeCo–Fe2CoO4/Co3O4 Nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis. Ceram Int 46:10262–10269. https://doi.org/10.1016/j.ceramint.2020.01.019

    Article  CAS  Google Scholar 

  11. Cai JM, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. https://doi.org/10.1038/nature09211

    Article  CAS  Google Scholar 

  12. Trukhanov SV, Trukhanov AV, Stepin SG, Szymczak H, Botez CE (2008) Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys Solid State 50:886–893. https://doi.org/10.1134/s1063783408050144

    Article  CAS  Google Scholar 

  13. Zdorovets MV, Kenzhina IE, Kudryashov V, Kozlovskiy AL (2020) Helium swelling in WO3 microcomposites. Ceram Int 46:10521–10529. https://doi.org/10.1016/j.ceramint.2020.01.053

    Article  CAS  Google Scholar 

  14. Zdorovets MV, Kozlovskiy AL (2019) Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries. Sci Rep 9:16646. https://doi.org/10.1038/s41598-019-53368-y

    Article  CAS  Google Scholar 

  15. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  16. Wang L, Xu XZ, Zhang LN et al (2019) Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570:91–95. https://doi.org/10.1038/s41586-019-1226-z

    Article  CAS  Google Scholar 

  17. Tishkevich DI, Grabchikov SS, Tsybulskaya LS et al (2018) Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J Alloys Compd 735:1943–1948. https://doi.org/10.1016/j.jallcom.2017.11.329

    Article  CAS  Google Scholar 

  18. Zubar TI, Fedosyuk VM, Trukhanov AV et al (2019) Control of growth mechanism of electrodeposited nanocrystalline NiFe Films. J Electrochem Soc 166:D173–D180. https://doi.org/10.1149/2.1001904jes

    Article  CAS  Google Scholar 

  19. Tishkevich DI, Grabchikov SS, Lastovskii SB, Trukhanov SV, Zubar TI, Vasin DS, Trukhanov AV (2018) Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. J Alloys Compd 749:1036–1042. https://doi.org/10.1016/j.jallcom.2018.03.288

    Article  CAS  Google Scholar 

  20. Zubar TI, Sharko SA, Tishkevich DI et al (2018) Anomalies in Ni-Fe nanogranular films growth. J Alloys Compd 748:970–978. https://doi.org/10.1016/j.jallcom.2018.03.245

    Article  CAS  Google Scholar 

  21. Li LF, Wang YL, Xie SY et al (2013) Two-dimensional transition metal honeycomb realized: Hf on Ir(111). Nano Lett 13:4671–4674. https://doi.org/10.1021/nl4019287

    Article  CAS  Google Scholar 

  22. Li LF, Lu SZ, Pan JB et al (2014) Buckled germanene formation on Pt(111). Adv Mater 26:4820–4824. https://doi.org/10.1002/adma.201400909

    Article  CAS  Google Scholar 

  23. Liang LB, Wang J, Lin WZ, Sumpter BG, Meunier V, Pan MH (2014) Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett 14:6400–6406. https://doi.org/10.1021/nl502892t

    Article  CAS  Google Scholar 

  24. Wang YL, Li LF, Yao W et al (2015) Monolayer PtSe2, a new semiconducting transition-metal dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett 15:4013–4018. https://doi.org/10.1021/acs.nanolett.5b00964

    Article  CAS  Google Scholar 

  25. Zhu FF, Chen WJ, Xu Y et al (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14:1020–1025. https://doi.org/10.1038/nmat4384

    Article  CAS  Google Scholar 

  26. Feng BJ, Zhang J, Zhong Q et al (2016) Experimental realization of two-dimensional boron sheets. Nat Chem 8:563–568. https://doi.org/10.1038/nchem.2491

    Article  CAS  Google Scholar 

  27. Shao Y, Song SR, Wu X et al (2017) Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. Appl Phys Lett 111:113107. https://doi.org/10.1063/1.4991065

    Article  CAS  Google Scholar 

  28. Wu X, Shao Y, Liu H et al (2017) Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv Mater 29:1605407. https://doi.org/10.1002/adma.201605407

    Article  CAS  Google Scholar 

  29. Deng JL, Xia BY, Ma XC et al (2018) Epitaxial growth of ultraflat stanene with topological band inversion. Nat Mater 17:1081–1086. https://doi.org/10.1038/s41563-018-0203-5

    Article  CAS  Google Scholar 

  30. Liu ZL, Wu X, Shao Y et al (2018) Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges. Sci Bull 63:419–425. https://doi.org/10.1016/j.scib.2018.03.008

    Article  CAS  Google Scholar 

  31. Chen H, Zhang XL, Zhang YY et al (2019) Atomically precise, custom-design origami graphene nanostructures. Science 365:1036–1040. https://doi.org/10.1126/science.aax7864

    Article  CAS  Google Scholar 

  32. Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park JM, Watanabe K, Taniguchi T, Jarillo-Herrero P (2020) Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 583:215–220. https://doi.org/10.1038/s41586-020-2260-6

    Article  CAS  Google Scholar 

  33. Ruan ZL, Hao ZL, Zhang H et al (2020) Topological-defect-induced superstructures on graphite surface. Chin Phys Lett 38:027201. https://doi.org/10.1088/0256-307X/38/2/027201

    Article  Google Scholar 

  34. Cai JM, Pignedoli CA, Talirz L et al (2014) Graphene nanoribbon heterojunctions. Nat Nanotechnol 9:896–900. https://doi.org/10.1038/nnano.2014.184

    Article  CAS  Google Scholar 

  35. Hao ZL, Zhang H, Ruan ZL, Yan CX, Lu JC, Cai JM (2020) Tuning the electronic properties of atomically precise graphene nanoribbons by bottom-up fabrication. Chem Nano Mat 6:493–515. https://doi.org/10.1002/cnma.201900706

    Article  CAS  Google Scholar 

  36. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  Google Scholar 

  37. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  38. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  39. Sørensen SG, Füchtbauer HG, Tuxen AK, Walton AS, Lauritsen JV (2014) Structure and electronic properties of in situ synthesized single-layer MoS2 on a gold surface. ACS Nano 8:6788–6796. https://doi.org/10.1021/nn502812n

    Article  CAS  Google Scholar 

  40. Liu HJ, Jiao L, Xie L et al (2015) Molecular-beam epitaxy of monolayer and bilayer WSe2 a scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater 2:034004. https://doi.org/10.1088/2053-1583/2/3/034004

    Article  CAS  Google Scholar 

  41. Lu JC, Bao DL, Qian K, Zhang S, Chen H, Lin X, Du SX, Gao HJ (2017) Identifying and visualizing the edge terminations of single-layer MoSe2 island epitaxially grown on Au(111). ACS Nano 11:1689–1695. https://doi.org/10.1021/acsnano.6b07512

    Article  CAS  Google Scholar 

  42. Oyedele AD, Yang SZ, Liang LB et al (2017) PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc 139:14090–14097. https://doi.org/10.1021/jacs.7b04865

    Article  CAS  Google Scholar 

  43. Wang Y, Xiao J, Zhu HY et al (2017) Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550:487–491. https://doi.org/10.1038/nature24043

    Article  CAS  Google Scholar 

  44. Wang ZY, Sun YY, Abdelwahab I et al (2018) Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano 12:12619–12628. https://doi.org/10.1021/acsnano.8b07379

    Article  CAS  Google Scholar 

  45. Guan JQ, Huang XC, Xu XF, Zhang SY, Jia X, Zhu XT, Wang WH, Guo JD (2018) Superstructures at Te/Au(111) interface evolving upon increasing Te coverage. Sur Sci 669:198–203. https://doi.org/10.1016/j.susc.2017.12.005

    Article  CAS  Google Scholar 

  46. Liu B, Liu J, Miao G et al (2019) Flat AgTe honeycomb monolayer on Ag(111). J Phys Chem Lett 10:1866–1871. https://doi.org/10.1021/acs.jpclett.9b00339

    Article  CAS  Google Scholar 

  47. Zhang S, Song Y, Li JM et al (2020) Epitaxial fabrication of monolayer copper arsenide on Cu(111). Chin Phys B 29:077301. https://doi.org/10.1088/1674-1056/ab8db3

    Article  CAS  Google Scholar 

  48. Lin X, Lu JC, Shao Y et al (2017) Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat Mater 16:717–721. https://doi.org/10.1038/nmat4915

    Article  CAS  Google Scholar 

  49. Gao L, Sun JT, Lu JC et al (2018) Epitaxial growth of honeycomb monolayer CuSe with dirac nodal line fermions. Adv Mater 30:1707055. https://doi.org/10.1002/adma.201707055

    Article  CAS  Google Scholar 

  50. Trukhanov SV, Trukhanov AV, Vasil’ev AN, Maignan A, Szymczak H (2007) Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett 85:507–512. https://doi.org/10.1134/s0021364007100086

    Article  CAS  Google Scholar 

  51. Zdorovets MV, Kozlovskiy AL (2020) The effect of lithium doping on the ferroelectric properties of LST ceramics. Ceram Int 46:14548–14557. https://doi.org/10.1016/j.ceramint.2020.02.254

    Article  CAS  Google Scholar 

  52. Zdorovets M, Kozlovskiy A, Tishkevich D, Zubar T, Trukhanov A (2020) The effect of doping of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. J Mater Sci-Mater in El 31:21142–21153. https://doi.org/10.1007/s10854-020-04626-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61901200), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30010000), the Yunnan Province Science and Technology Plan Project (Grant No. 2019FD041), the Reserve Talents for Yunnan Young and Middle Aged Academic and Technical Leaders (2017HB010), the China Postdoctoral Science Foundation and the Yunnan Province Postdoctoral Science Foundation and the Analysis and Testing Fund of KUST (2019M20182230034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchen Lu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ruan, Z., Du, R. et al. Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores. J Mater Sci 56, 10406–10413 (2021). https://doi.org/10.1007/s10853-021-05959-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05959-2

Navigation