Skip to main content
Log in

Electronic properties of monolayer copper selenide with one-dimensional moiré patterns

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Strain engineering is a vital way to manipulate the electronic properties of two-dimensional (2D) materials. As a typical representative of transition metal mono-chalcogenides (TMMs), a honeycomb CuSe monolayer features with one-dimensional (1D) moiré patterns owing to the uniaxial strain along one of three equivalent orientations of Cu(111) substrates. Here, by combining low-temperature scanning tunneling microscopy/spectroscopy (STM/S) experiments and density functional theory (DFT) calculations, we systematically investigate the electronic properties of the strained CuSe monolayer on the Cu(111) substrate. Our results show the semiconducting feature of CuSe monolayer with a band gap of 1.28 eV and the 1D periodical modulation of electronic properties by the 1D moiré patterns. Except for the uniaxially strained CuSe monolayer, we observed domain boundary and line defects in the CuSe monolayer, where the biaxial-strain and strain-free conditions can be investigated respectively. STS measurements for the three different strain regions show that the first peak in conduction band will move downward with the increasing strain. DFT calculations based on the three CuSe atomic models with different strain inside reproduced the peak movement. The present findings not only enrich the fundamental comprehension toward the influence of strain on electronic properties at 2D limit, but also offer the benchmark for the development of 2D semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS2 transistors, Science 344(6191), 1489 (2014)

    Article  ADS  Google Scholar 

  2. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nat. Nanotechnol. 13(3), 246 (2018)

    Article  ADS  Google Scholar 

  3. S. Y. Zhu, Y. Shao, E. Wang, L. Cao, X. Y. Li, Z. L. Liu, C. Liu, L. W. Liu, J. O. Wang, K. Ibrahim, J. T. Sun, Y. L. Wang, S. Du, and H. J. Gao, Evidence of topological edge states in buckled antimonene monolayers, Nano Lett. 19(9), 6323 (2019)

    Article  ADS  Google Scholar 

  4. Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, and Q. Liu, Emerging of two-dimentional materials in novel memristor, Front. Phys. 17(2), 23204(2022)

    Article  ADS  Google Scholar 

  5. Y. H. Mao, H. Shan, J. R. Wu, Z. J. Li, C. Z. Wu, X. F. Zhai, A. D. Zhao, and B. Wang, Observation of pseudogap in SnSe2 atomic layers grown on graphite, Front. Phys. 15(4), 43501 (2020)

    Article  ADS  Google Scholar 

  6. J. X. Lin, Y. H. Zhang, E. Morissette, Z. Wang, S. Liu, D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, and J. Li, Spin—orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene, Science 375(6579), 437 (2022)

    Article  ADS  Google Scholar 

  7. X. Y. Wang, H. Zhang, Z. L. Ruan, Z. L. Hao, X. T. Yang, J. M. Cai, and J. C. Lu, Research progress of monolayer two-dimensional atomic crystal materials grown by molecular beam epitaxy in ultra-high vacuum conditions, Acta. Phys. Sin. 69(11), 118101 (2020)

    Article  Google Scholar 

  8. B. Liu, J. Liu, G. Miao, S. Xue, S. Zhang, L. Liu, X. Huang, X. Zhu, S. Meng, J. Guo, M. Liu, and W. Wang, Flat AgTe honeycomb monolayer on Ag(111), J. Phys. Chem. Lett. 10(8), 1866 (2019)

    Article  Google Scholar 

  9. J. Shah, H. M. Sohail, R. I. G. Uhrberg, and W. Wang, Two-dimensional binary honeycomb layer formed by Ag and Te on Ag(111), J. Phys. Chem. Lett. 11(5), 1609 (2020)

    Article  Google Scholar 

  10. M. Ünzelmann, H. Bentmann, P. Eck, T. Kißlinger, B. Geldiyev, J. Rieger, S. Moser, R. C. Vidal, K. Kißner, L. Hammer, M. A. Schneider, T. Fauster, G. Sangiovanni, D. Di Sante, and F. Reinert, Orbital-driven Rashba effect in a binary honeycomb monolayer AgTe, Phys. Rev. Lett. 124(17), 176401 (2020)

    Article  ADS  Google Scholar 

  11. X. Lin, J. C. Lu, Y. Shao, Y. Y. Zhang, X. Wu, J. B. Pan, L. Gao, S. Y. Zhu, K. Qian, Y. F. Zhang, D. L. Bao, L. F. Li, Y. Q. Wang, Z. L. Liu, J. T. Sun, T. Lei, C. Liu, J. O. Wang, K. Ibrahim, D. N. Leonard, W. Zhou, H. M. Guo, Y. L. Wang, S. X. Du, S. T. Pantelides, and H. J. Gao, Intrinsically patterned two-dimensional materials for selective adsorption of moleculer and nanoclusters, Nat. Mater. 16(7), 717 (2017)

    Article  ADS  Google Scholar 

  12. L. Gao, J. T. Sun, J. C. Lu, H. Li, K. Qian, S. Zhang, Y. Y. Zhang, T. Qian, H. Ding, X. Lin, S. Du, and H. J. Gao, Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions, Adv. Mater. 30(16), 1707055 (2018)

    Article  Google Scholar 

  13. J. Lu, L. Gao, S. Song, H. Li, G. Niu, H. Chen, T. Qian, H. Ding, X. Lin, S. Du, and H. J. Gao, Honeycomb AgSe monolayer nanosheets for studying two-dimensional Dirac nodal line fermions, ACS Appl. Nano Mater. 4(9), 8845 (2021)

    Article  Google Scholar 

  14. X. Wang, Z. Ruan, R. Du, H. Zhang, X. Yang, G. Niu, J. Cai, and J. Lu, Structural characterizations and electronic properties of CuSe monolayer endowed with triangular nanopores, J. Mater. Sci. 56(17), 10406 (2021)

    Article  ADS  Google Scholar 

  15. L. Gao, Y. F. Zhang, J. T. Sun, and S. Du, Band engineering of honeycomb monolayer CuSe via atomic modification, Chin. Phys. B 30(10), 106807 (2021)

    Article  ADS  Google Scholar 

  16. G. Niu, J. Lu, X. Wang, Z Ruan, H. Zhang, L. Gao, J. Cai, and X. Lin, Se-concentration dependent superstructure transformations of CuSe monolayer on Cu(111) substrate, 2D Mater. 9(1), 015017 (2022)

    Article  Google Scholar 

  17. Z. Song, J. Huang, S. Zhang, Y. Cao, C. Liu, R. Zhang, Q. Zheng, L. Cao, L. Huang, J. Wang, T. Qian, H. Ding, W. Zhou, Y. Y. Zhang, H. Lu, C. Shen, X. Lin, S. Du, and H. J. Gao, Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure, Phys. Rev. Lett. 128(2), 026401 (2022)

    Article  ADS  Google Scholar 

  18. K. Tang and W. Qi, Moiré-pattern-tuned electronic structures of van Der Waals heterostructures, Adv. Funct. Mater. 30(32), 2002672 (2020)

    Article  Google Scholar 

  19. J. Kang, J. Li, S. S. Li, J. B. Xia, and L. W. Wang, Electronic structural moire pattern effects on MoS2/MoSe2 2d heterostructures, Nano Lett. 13(11), 5485 (2013)

    Article  ADS  Google Scholar 

  20. K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers, Nature 567(7746), 66 (2019)

    Article  ADS  Google Scholar 

  21. C. Zhang, M. Y. Li, J. Tersoff, Y. Han, Y. Su, L. J. Li, D. A. Muller, and C. K. Shih, Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions, Nat. Nanotechnol. 13(2), 152 (2018)

    Article  ADS  Google Scholar 

  22. Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, and H. Gao, Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001), Adv. Mater. 21(27), 2777 (2009)

    Article  Google Scholar 

  23. Y. S. Bai, L. Zhou, J. Wang, W. J. Wu, L. J. McGilly, D. Halbertal, C. F. B. Lo, F. Liu, J. Ardelean, P. Rivera, N. R. Finney, X. C. Yang, D. N. Basov, W. Yao, X. Xu, J. Hone, A. N. Pasupathy, and X. Y. Zhu, Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions, Nat. Mater. 19(10), 1068 (2020)

    Article  ADS  Google Scholar 

  24. Q. J. Tong, H. Y. Yu, Q. Z. Zhu, Y. Wang, X. D. Xu, and A. Yao, Topological mosaics in moire superlattices of van Der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017)

    Article  Google Scholar 

  25. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, WSxM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum. 78(1), 013705 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62271238 and 61901200), the Yunnan Fundamental Research Projects (Nos. 202201AT070078, 202101AV070008, 202101AW070010, and 202101AU070043), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), the Analysis and Testing Foundation of KUST (2021T20170056), and the Dongguan Innovation Research Team Program. Numerical computations were performed on Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchen Lu, Lei Gao or Jinming Cai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, G., Lu, J., Geng, J. et al. Electronic properties of monolayer copper selenide with one-dimensional moiré patterns. Front. Phys. 18, 13303 (2023). https://doi.org/10.1007/s11467-022-1211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1211-0

Keywords

Navigation