Skip to main content
Log in

Tailoring the electromagnetic properties of perovskite La0.7Sr0.3MnO3 ceramics by Co doping

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tailoring of electromagnetic (EM) parameters has become increasingly important for EM waves propagation, absorption and shielding applications. Single-phase La0.7Sr0.3Mn1-yCoyO3 (LSMCO, y = 0, 0.3, 0.5, and 1.0) have been prepared by a sol-gel process followed by cold pressing and sintering. The effect of Co doping on the electromagnetic properties of LSMO has been investigated. Plasma-like negative permittivity (\(\varepsilon_{r}^{\prime }\) < 0) and negative susceptibility (\(\mu_{r}^{\prime }\) < 1) appear simultaneously in La0.7Sr0.3MnO3 (y = 0, LSMO). The negative permittivity for frequencies ranging from 0.01 to 1 GHz results from plasma oscillation of conduction electrons in LSMO, and the frequency dispersion agrees well with the Drude model. A higher positive permittivity was also obtained with increasing Co content, indicating a wide adjustment range of permittivity from − 1.3 × 104 to 2.9 × 104, which represents an important step toward the development of new capacitors with a higher capacitance for integrated circuit. Furthermore, tunable negative susceptibility is observed for LSMO and La0.7Sr0.3CoO3 (y = 1.0, LSCO) samples over frequency ranges of 0.1–1 GHz and 0.01–1 GHz, respectively. These results open the door for the realization of tunable negative electromagnetic properties in single-phase perovskites, which is of great significance for the development of negative parameters materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tokura Y (2000) Colossal magneto-resistive oxides, 1st edn. Gordon and Breach, New York

    Book  Google Scholar 

  2. Xu H, Huang H, Wu Q, Wang Z, Cui Z, Zhai X, Wang J, Fu Z, Lu Y (2020) Anisotropic magnetoresistance and nonvolatile memory in superlattices of La2/3Sr1/3MnO3 and antiferromagnet Sr2IrO4. J Mater Sci 55:8211–8219. https://doi.org/10.1007/s10853-020-04585-8

    Article  CAS  Google Scholar 

  3. Yao LD, Inkinen S, van Dijken S (2017) Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat Commun 8:14544 (1–8). https://doi.org/10.1038/ncomms14544

    Article  CAS  Google Scholar 

  4. Tokuda M, Mashimo T, Khandaker JI et al (2016) Effect of strong gravitational field on oriented crystalline perovskite-type manganese oxide La1-xSrxMnO3. J Mater Sci 51:7899–7906. https://doi.org/10.1007/s10853-016-0045-y

    Article  CAS  Google Scholar 

  5. Balevičius S, Žurauskienė N, Stankevič V, Keršulis S, Plaušinaitienė V, Abrutis A, Zherlitsyn S, Herrmannsdörfer T et al (2012) Nanostructured thin manganite films in megagauss magnetic field. Appl Phys Lett 101:092407. https://doi.org/10.1063/1.4749820

    Article  CAS  Google Scholar 

  6. Wang Y, Arandiyan H, Scott J, Akia M, Dai H, Deng J, Amal R (2016) High performance Au−Pd supported on 3D hybrid strontium-substituted lanthanum manganite perovskite catalyst for methane combustion. ACS Catal 6:6935–6947. https://doi.org/10.1021/acscatal.6b01685

    Article  CAS  Google Scholar 

  7. Wang L, Al-Mamun M, Zhong YL, Jiang L, Liu P, Wang Y, Zhao H (2017) Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustain Energy Fuels 1:1013–1017. https://doi.org/10.1039/c6se00097e

    Article  CAS  Google Scholar 

  8. Lloyd-Hughes J, Mosley C, Jones S, Lees MR, Chen A, Jia QX, MacManus-Driscoll JL (2017) Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3nanocomposites and single-phase thin films. Nano Lett 17:2506–2511. https://doi.org/10.1021/acs.nanolett.7b00231

    Article  CAS  Google Scholar 

  9. Armstrong EN, Duncana KL, Wachsman ED (2013) Effect of A and B-site cations on surface exchange coefficient for ABO3 perovskite materials. Phys Chem Chem Phys 15:2298–2308. https://doi.org/10.1039/c2cp42919e

    Article  CAS  Google Scholar 

  10. Reshi HA, Singh AP, Yadav P, Dhawan SK, Shelke V (2015) Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range. J Mater Chem C 3:820–827. https://doi.org/10.1039/c4tc02040e

    Article  CAS  Google Scholar 

  11. Jackson JD (1999) Classical electromagnetics, 3rd edn. Wiley, New York

    Google Scholar 

  12. Padilla WJ, Basov DN, Smith DR (2006) Negative refractive index metamaterials. Mater Today 9(7–8):28–35. https://doi.org/10.1016/S1369-7021(06)71573-5

    Article  CAS  Google Scholar 

  13. Chen X, Grzegorczyk TM, Wu BI, Pacheco J Jr, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70(1):016608. https://doi.org/10.1103/PhysRevE.70.016608

    Article  CAS  Google Scholar 

  14. Smith DR, Schultz S, Markoš P, Soukoulis CM (2001) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65(19):195104. https://doi.org/10.1103/PhysRevB.65.195104

    Article  CAS  Google Scholar 

  15. Smith DR, Vier DC, Koschny T, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617. https://doi.org/10.1103/PhysRevE.71.036617

    Article  CAS  Google Scholar 

  16. Landy N, Sajuyigbe S, Mock J, Smith D, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402. https://doi.org/10.1103/PhysRevLett.100.207402

    Article  CAS  Google Scholar 

  17. Liu X, Lan C, Bi K, Li B, Zhao Q, Zhou J (2016) Dual band metamaterial perfect absorber based on Mie resonances. Appl Phys Lett 109:062902. https://doi.org/10.1063/1.4960802

    Article  CAS  Google Scholar 

  18. Shi ZC, Fan RH, Zhang ZD, Qian L, Gao M, Zhang M, Yin LW (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24:2349–2353. https://doi.org/10.1002/adma.201200157

    Article  CAS  Google Scholar 

  19. Shi ZC, Fan RH, Yan KL, Sun K, Zhang M, Wang CG, Liu XF, Zhang XH (2013) Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Fun Mater 23:33–43. https://doi.org/10.1002/adfm.201202895

    Article  CAS  Google Scholar 

  20. Sun K, Fan RH, Zhang ZD, Yan KL, Zhang XH, Xie PT, Yu MX, Pan SB (2015) Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites. Appl Phys Lett 106:172902. https://doi.org/10.1063/1.4941758

    Article  CAS  Google Scholar 

  21. Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K (2013) Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett 103(26):261906. https://doi.org/10.1063/1.4858976

    Article  CAS  Google Scholar 

  22. Wu HK, Yin R, Qian L, Zhang ZD (2017) Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater Des 117:18–23. https://doi.org/10.1016/j.matdes.2016.12.068

    Article  CAS  Google Scholar 

  23. Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267. https://doi.org/10.1016/j.carbon.2016.05.055

    Article  CAS  Google Scholar 

  24. Khodzitsky MK, Kalmykova TV, Tarapov SI, Belozorov DP, Pogorily AM, Tovstolytkin AI, Belous AG, Solopan SA (2009) Negative refraction in natural ferromagnetic metals. Appl Phys Lett 95:082903. https://doi.org/10.1209/0295-5075/95/37005

    Article  CAS  Google Scholar 

  25. Park J, Vescovo E, Kim H, Kwon C, Ramesh R, Venkatesan T (1998) Direct evidence for a half-metallic ferromagnet. Nature 392:794–796. https://doi.org/10.1038/33883

    Article  CAS  Google Scholar 

  26. Pimenov A, Loidl A, Gehrke K, Moshnyaga V, Samwer K (2009) Left-handed behavior of strontium-doped lanthanum manganite in the millimeter waveband. Phys Rev Lett 98:197401. https://doi.org/10.1063/1.3204004

    Article  CAS  Google Scholar 

  27. Vishal P, Onkar S, Satishchandra B (2015) Ferromagnetism in metal oxide systems: interfaces, dopants, and defects. J Mater Chem C 1:1545–1557. https://doi.org/10.1039/c2tc00172a

    Article  CAS  Google Scholar 

  28. Yan K, Fan R, Shi Z, Chen M, Qian L, Wei Y, Sun K, Li J (2014) Negative permittivity behavior and magnetic performance of perovskite La1-xSrxMnO3 at high-frequency. J Mater Chem C 2:1028–1033. https://doi.org/10.1039/c3tc31906g

    Article  CAS  Google Scholar 

  29. Petrov AN, Voronin VI, Norby T, Kofstad P (1999) Crystal structure of the mixed oxides La0.7Sr0.3Mn1-zCozOy (0 ≤ z ≤ 1). J Solid State Chem 143(1):52–57. https://doi.org/10.1006/jssc.1998.8073

    Article  CAS  Google Scholar 

  30. Gholizadeh A, Malekzadeh A, Ghiasi M (2016) Structural and magnetic features of La0.7Sr0.3Mn1-yCoyO3 nano-catalysts for ethane combustion and CO oxidation. Ceram Int 42(5):5707–5717. https://doi.org/10.1016/j.ceramint.2015.12.101

    Article  CAS  Google Scholar 

  31. Shi ZC, Fan RH, Yan KL, Sun K, Zhang M, Wang CG, Liu XF, Zhang XH (2013) Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Funct Mater 23(33):4123–4132. https://doi.org/10.1002/adfm.201202895

    Article  CAS  Google Scholar 

  32. Phuc NX, Bau LV, Khiem NV, Son LH, Nam DNH (2003) Magnetic and transport properties of La0.7Sr0.3Co1-yMnyO3–No double exchange between Mn and Co. Phys B 327:177–182. https://doi.org/10.1016/S0921-4526(02)01721-0

    Article  CAS  Google Scholar 

  33. Dressel M, Grüner G (2002) Electrodynamics of solids. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  34. Tian C, Yue Z, Meng S, Zhou Y (2012) Structures and Microwave Dielectric Properties of Ba[Ti1-x(Co0.5W0.5)x]O3 (x = 0.40 − 0.90) Perovskite Ceramics. J Am Ceram Soc 95:1645–1650. https://doi.org/10.1111/j.1551-2916.2011.05045.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (Nos. 51902154, 51772150), Key Research and Development Program of Jiangsu Province (No. BE2018008-1). The authors also acknowledge to Prof. Arunava Gupta for his experimental help and the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningzhong Bao.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Shen, L., Fan, R. et al. Tailoring the electromagnetic properties of perovskite La0.7Sr0.3MnO3 ceramics by Co doping. J Mater Sci 56, 10183–10190 (2021). https://doi.org/10.1007/s10853-021-05813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05813-5

Navigation