Skip to main content
Log in

Tunable optoelectronic properties in multilayer 1T-TiS2: the effects of strain and an external electric field

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we study the electronic properties of mono- and multilayer titanium disulfide (TiS2) with the aid of first-principles calculations based on density functional theory. We find that the band gap can slightly be tuned as a function of the number (N) of stacked layers, ranging from 0.49 eV in the monolayer down to 0.40 eV in the bulk form—as a result of quantum confinement and the formation of sub-bands. However, the introduction of external agents such as biaxial strain and electric fields can significantly change the electronic properties of the system and induce strong gap modifications. Compressive strains and electrical fields are found to reduce the indirect band gap and induce a semiconductor to semimetal transition beyond a critical value, which is a decreasing function of N. In contrast, under tensile strains, the gap increases up to a maximum value and can reach about 0.90 eV under a 5% strain. Furthermore, we also report the optical properties of these systems, which display strong absorption peaks in both visible and UV regions of the spectrum, thus making the most of incident solar light. These properties also display a good tunability, as the peak intensities increase with N and the peak positions show a strong dispersion with strain. However, the spectra are less sensitive to electrical fields, despite their response being very similar to that found under compressive strains. Finally, k-resolved band structure calculations suggest the existence of both intralayer and interlayer excitons in optical transitions in the visible range. In light of these results, we believe that TiS2 can efficiently be explored in the design of novel vdW heterostructures in combination with other 2D materials, thus opening the way to novel applications in future nano- and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

Data availability

All the data are available from the authors on request.

References

  1. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451

    Article  CAS  Google Scholar 

  2. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712

    Article  CAS  Google Scholar 

  3. Chhowalla M, Jena D, Zhang H (2016) Two-dimensional semiconductors for transistors. Nat Rev Mater 1:16052

    Article  CAS  Google Scholar 

  4. Tan C, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44:2713–2731

    Article  CAS  Google Scholar 

  5. Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R, Koumoto K (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 14:622–627

    Article  CAS  Google Scholar 

  6. Kukkonen CA, Maldague PF (1976) Electron-Hole Scattering and the Electrical Resistivity of the Semimetal TiS2. Phys Rev Lett 37:782–785

    Article  CAS  Google Scholar 

  7. Fischer DW (1973) X-ray band spectra and electronic structure of TiS2. Phys Rev B 8:3576–3582

    Article  CAS  Google Scholar 

  8. Liu B, Yang J, Han Y, Hu T, Ren W, Liu C, Ma Y, Gao C (2011) Electronic structure of TiS2 and its electric transport properties under high pressure. J Appl Phys 109:053717

    Article  Google Scholar 

  9. Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126

    Article  CAS  Google Scholar 

  10. Aja J (1984) A rechargeable battery employing a reduced polyacetylene anode and a titanium disulfide cathode. J Electrochem Soc 131:2744

    Article  Google Scholar 

  11. Holleck GL, Driscoll JR (1977) Transition metal sulfides as cathodes for secondary lithium batteries—II. titanium sulfides. Electrochim Acta 22:647–655

    Article  CAS  Google Scholar 

  12. Xu C, Brown PA, Shuford KL (2015) Strain-induced semimetal-to-semiconductor transition and indirect-to-direct band gap transition in monolayer 1T-TiS2. RSC Advances 5:83876–83879

    Article  CAS  Google Scholar 

  13. Chen P, Chan YH, Fang XY, Zhang Y, Chou MY, Mo SK, Hussain Z, Fedorov AV, Chiang TC (2015) Charge density wave transition in single-layer titanium diselenide. Nat Commun 6:8943

    Article  CAS  Google Scholar 

  14. Dolui K, Sanvito S (2016) Dimensionality-driven phonon softening and incipient charge density wave instability in TiS 2. EPL (Europhys Lett) 115:47001

    Article  Google Scholar 

  15. Duong DL, Ryu G, Hoyer A, Lin C, Burghard M, Kern K (2017) Raman characterization of the charge density wave phase of 1T-TiSe2: from bulk to atomically thin layers. ACS Nano 11:1034–1040

    Article  CAS  Google Scholar 

  16. Fang CM, de Groot RA, Haas C (1997) Bulk and surface electronic structure of 1 − TiS2 and 1T − TiSe2. Phys Rev B 56:4455–4463

    Article  CAS  Google Scholar 

  17. Li G, Yao K, Gao G (2017) Strain-induced enhancement of thermoelectric performance of TiS2 monolayer based on first-principles phonon and electron band structures. Nanotechnology 29:015204

    Article  Google Scholar 

  18. Mohanta MK, Fathima IS, De Sarkar A (2020) Exceptional mechano-electronic properties in the HfN2 monolayer: a promising candidate in low-power flexible electronics, memory devices and photocatalysis. Phys Chem Chem Phys 22:21275–21287

    Article  CAS  Google Scholar 

  19. Mohanta MK, Kishore A, De Sarkar A (2020) Two-dimensional ultrathin van der Waals heterostructures of indium selenide and boron monophosphide for superfast nanoelectronics, excitonic solar cells, and digital data storage devices. Nanotechnology 31:495208

    Article  CAS  Google Scholar 

  20. Yang X, Sa B, Zhan H, Sun Z (2017) Electric field-modulated data storage in bilayer InSe. J Mater Chem C 5:12228–12234

    Article  CAS  Google Scholar 

  21. Ullah S, Denis PA, Menezes MG, Sato F (2019) Tunable optoelectronic properties in h-BP/h-BAs bilayers: the effect of an external electrical field. Appl Surf Sci 493:308–319

    Article  CAS  Google Scholar 

  22. Ullah S, Denis PA, Sato F (2019) Theoretical investigation of various aspects of two dimensional holey boroxine, B3O3. RSC Adv 9:37526–37536

    Article  CAS  Google Scholar 

  23. Li J, Duan H, Zeng B, Jing Q, Cao B, Chen F, Long M (2018) Strain-Induced Band Structure Modulation in Hexagonal Boron Phosphide/Blue Phosphorene vdW Heterostructure. J Phys Chem C 122:26120–26129

    Article  CAS  Google Scholar 

  24. Huang L, Yue Q, Kang J, Li Y, Li J (2014) Tunable band gaps in graphene/GaN van der Waals heterostructures. J Phys: Condens Matter 26:295304

    Google Scholar 

  25. Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer graphene—BN heterostructures. Nano Lett 11:1070–1075

    Article  CAS  Google Scholar 

  26. Mogulkoc A, Mogulkoc Y, Modarresi M, Alkan B (2018) Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Phys Chem Chem Phys 20:28124–28134

    Article  CAS  Google Scholar 

  27. Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6:5449–5456

    Article  CAS  Google Scholar 

  28. Park KH, Choi J, Kim HJ, Oh D-H, Ahn JR, Son SU (2008) Unstable Single-Layered Colloidal TiS2 Nanodisks. Small 4:945–950

    Article  CAS  Google Scholar 

  29. Mahuli N, Sarkar SK (2014) Atomic layer deposition of titanium sulfide and its application in extremely thin absorber solar cells. J Vac Sci Technol, A 33:01A150

    Article  Google Scholar 

  30. Ivanovskaya VV, Seifert G, Ivanovskii AL (2005) Electronic structure of titanium disulfide nanostructures: monolayers, nanostripes, and nanotubes. Semiconductors 39:1058–1065

    Article  CAS  Google Scholar 

  31. Chen J, Li S-L, Tao Z-L, Shen Y-T, Cui C-X (2003) Titanium Disulfide Nanotubes as Hydrogen-Storage Materials. J Am Chem Soc 125:5284–5285

    Article  CAS  Google Scholar 

  32. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42:3018–3032

    Article  CAS  Google Scholar 

  33. Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15:1911–1917

    Article  CAS  Google Scholar 

  34. Whittingham MS (2000) Insertion electrodes as SMART materials: the first 25 years and future promises. Solid State Ionics 134:169–178

    Article  CAS  Google Scholar 

  35. Sherrell PC, Sharda K, Grotta C, Ranalli J, Sokolikova MS, Pesci FM, Palczynski P, Bemmer VL, Mattevi C (2018) Thickness-dependent characterization of chemically exfoliated TiS2 nanosheets. ACS Omega 3:8655–8662

    Article  CAS  Google Scholar 

  36. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  37. Román-Pérez G, Soler JM (2009) Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys Rev Lett 103:096102

    Article  Google Scholar 

  38. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:R10441

    Article  Google Scholar 

  39. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  40. Samad A, Shafique A, Shin Y-H (2017) Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS2. Nanotechnology 28:175401

    Article  Google Scholar 

  41. Li Y, Kang J, Li J (2014) Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: first-principles calculations. RSC Adv 4:7396–7401

    Article  CAS  Google Scholar 

  42. Wu N, Zhao X, Ma X, Xin Q, Liu X, Wang T, Wei S (2017) Strain effect on the electronic properties of 1T-HfS2 monolayer. Physica E 93:1–5

    Article  Google Scholar 

  43. Ullah S, Denis PA, Capaz RB, Sato F (2019) Theoretical characterization of hexagonal 2D Be3N2 monolayers. New J Chem 43:2933–2941

    Article  CAS  Google Scholar 

Download references

Acknowledgement

JZ, XZ and WZ are thankful to the National Natural Science Foundation of China (21773012 and U2032112) and the Fundamental Research Funds for Central Universities. SU is thankful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Financiadora de Estudos e Projetos (FINEP) for their financial support. MGM is thankful to CNPq, CAPES, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and INCT- Nanomateriais de Carbono.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saif Ullah or Wenkai Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1

Appendix

Appendix

See Figs. 16 and 17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, J., Zhao, X., Ullah, S. et al. Tunable optoelectronic properties in multilayer 1T-TiS2: the effects of strain and an external electric field. J Mater Sci 56, 6891–6902 (2021). https://doi.org/10.1007/s10853-020-05760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05760-7

Navigation