Skip to main content

Advertisement

Log in

Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biogenic hydroxyapatite (NHAp) was prepared by calcination of waste pork bones and investigated as catalytic support for Ni and Cu metals in the water–gas shift (WGS) reaction. Part of the doped Cu was ion exchanged with Ca ions in the NHAp structure. Also, XPS data showed that after Cu doping, nickel d-hole density increased due to adjacent Cu atoms. Upon reduction, Ni–Cu alloying was detected. For an ideal mixture (CO/H2O: 1/2 in vol%), the monometallic Cu assay was WGS inactive, whereas 10Ni/NHAp was the most active. However, under reformer outlet stream conditions (CO/H2O/CO2/H2/He = 5/46/4/31/14, in vol%), the catalyst 10Ni/NHAp showed negative H2 yield (net hydrogen consumption), whereas selectivity and yield to H2 by Cu-doped bimetallic catalysts reached up to 93% and 26%, respectively. Interestingly, the band-gap energy of these catalysts decreased in line with methane suppression capability (10Ni/NHAp ≫ 7.5Ni2.5Cu/NHAp > 2.5Ni2.5Cu/NHAp > 10Cu/NHAp). Long duration catalytic tests revealed that NHAp derived from pork bone can provide good stability for the WGS reaction, with negligible carbon deposition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Damen K, van Troost M, Faaij A, Turkenburg W (2006) A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: review and selection of promising conversion and capture technologies. Prog Energy Combust 32:215–246

    CAS  Google Scholar 

  2. Ruettinger W, Liu XS, Farrauto RJ (2006) Mechanism of aging for a Pt/CeO2–ZrO2 water–gas shift catalyst. Appl Catal B Environ 65:135–141

    CAS  Google Scholar 

  3. Newsome DS (1980) The water–gas shift reaction. Catal Rev 21:275–318

    CAS  Google Scholar 

  4. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440

    CAS  Google Scholar 

  5. Nisar J, Razaq R, Farooq M, Iqbal M, Ali Khan R, Sayed M, Shah A, Rahman I (2017) Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew Energy 101:111–119

    CAS  Google Scholar 

  6. Sebti S, Tahir R, Nazih R, Saber A, Boulaajaj S (2002) Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent. Appl Catal A Gen 228:155–159

    CAS  Google Scholar 

  7. Domínguez MI, Romero-Sarria F, Centeno MA, Odriozola JA (2009) Gold/hydroxyapatite catalysts: synthesis, characterization and catalytic activity to CO oxidation. Appl Catal B Environ 87:245–251

    Google Scholar 

  8. Uskoković V (2015) The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Adv 5:36614–36633

    Google Scholar 

  9. Elkabouss K, Kacimi M, Ziyad M, Ammar S, Bozon-Verduraz F (2004) Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. J Catal 226:16–24

    CAS  Google Scholar 

  10. Miao D, Cavusoglu G, Lichtenberg H, Yu J, Xu H, Grunwaldt JD, Goldbach A (2017) Water–gas shift reaction over platinum/strontium apatite catalysts. Appl Catal B Environ 202:587–596

    CAS  Google Scholar 

  11. Silvester L, Lamonier JF, Vannier RN, Lamonier C, Capron M, Mamede AS, Pourpoint F, Gervasini A, Dumeignil F (2014) Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. J Mater Chem A 2:11073–11090

    CAS  Google Scholar 

  12. Venugopal A, Scurrell MS (2003) Hydroxyapatite as a novel support for gold and ruthenium catalysts: behaviour in the water gas shift reaction. Appl Catal A Gen 245:137–147

    CAS  Google Scholar 

  13. Boukha Z, Ayastuy JL, González-Velasco JR, Gutiérrez-Ortiz MA (2017) CO elimination processes over promoter-free hydroxyapatite supported palladium catalysts. Appl Catal B Environ 201:189–201

    CAS  Google Scholar 

  14. Kaneda K, Mizugaki T (2009) Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy Environ Sci 2:655–673

    CAS  Google Scholar 

  15. Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH (2017) Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J Taiwan Inst Chem Eng 71:47–54

    CAS  Google Scholar 

  16. Grunenwald A, Keyser C, Sautereau AM, Crubezy E, Ludes B, Drouet C (2014) Revisiting carbonate quantification in apatite (bio)minerals: a validated FTIR methodology. J Arch Sci 49:134–141

    CAS  Google Scholar 

  17. El Haddad M, Slimani R, Mamouni R, Laamari MR, Rafqah S, Lazar S (2013) Evaluation of potential capability of calcined bones on the biosorption removal efficiency of safranin as cationic dye from aqueous solutions. J Taiwan Inst Chem Eng 44:13–18

    Google Scholar 

  18. Smith SM, Oopathum C, Weeramongkhonlert V, Smith CB, Chaveanghong S, Ketwong P, Boonyuen S (2013) Transesterification of soybean oil using bovine bone waste as new catalyst. Bioresour Technol 143:686–690

    CAS  Google Scholar 

  19. Iriarte-Velasco U, Ayastuy JL, Boukha Z, Bravo R, Gutiérrez-Ortiz MA (2018) Transition metals supported on bone-derived hydroxyapatite as potential catalysts for the water–gas shift reaction. Renew Energy 115:641–648

    CAS  Google Scholar 

  20. Abd El-Moemen A, Kučerová G, Behm RJ (2010) Influence of H2, CO2 and H2O on the activity and deactivation behavior of Au/CeO2 catalysts in the water gas shift reaction at 300 °C. Appl Catal B Environ 95:57–70

    CAS  Google Scholar 

  21. Ma L, Ma H, Han D, Qiu M, Guan Y, Hu Y (2018) Evolution of copper supported on Fe3O4 nanorods for WGS reaction. Catalysts 8(10):415. https://doi.org/10.3390/catal8100415

    Article  CAS  Google Scholar 

  22. Boukha Z, Ayastuy JL, González-Velasco JR, Gutiérrez-Ortiz MA (2018) Water-gas shift reaction over a novel Cu-ZnO/HAP formulation: enhanced catalytic performance in mobile fuel cell applications. Appl Catal A Gen 566:1–14

    CAS  Google Scholar 

  23. Wang T, Dorner-Reisel A, Müller E (2004) Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc 24:693–698

    CAS  Google Scholar 

  24. Yasukawa A, Kandori K, Ishikawa T (2003) TPD–TG–MS study of carbonate calcium hydroxyapatite particles. Calcif Tissue Int 72:243–250

    CAS  Google Scholar 

  25. Iriarte-Velasco U, Ayastuy JL, Zudaire L, Sierra I (2014) An insight into the reactions occurring during the chemical activation of bone char. Chem Eng J 251:217–227

    CAS  Google Scholar 

  26. Achchar M, Lamonier C, Ezzamarty A, Lakhdar M, Leglise J, Payen E (2009) New apatite-based supports prepared by industrial phosphoric acid for HDS catalyst synthesis. CR Chim 12:677–682

    CAS  Google Scholar 

  27. Rey C, Combes C, Christophe D, Grossin D (2011) Bioactive ceramics: physical chemistry. In: Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials. Elsevier, Amsterdam, pp 187–221

    Google Scholar 

  28. Madupalli H, Pavan B, Tecklenburg MMJ (2017) Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255:27–35

    CAS  Google Scholar 

  29. Corami A, Mignardi S, Ferrini V (2008) Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite. J Colloid Interface Sci 317:402–408

    CAS  Google Scholar 

  30. Belik AA, Naumov P, Kim J, Tsuda S (2011) Low-temperature structural phase transition in synthetic libethenite Cu2PO4OH. J Solid State Chem 184:3128–3133

    CAS  Google Scholar 

  31. Tonegawa T, Ikoma T, Yoshioka T, Hanagata N, Tanaka J (2010) Crystal structure refinement of A-type carbonate apatite by X-ray powder diffraction. J Mater Sci 45:2419–2426. https://doi.org/10.1007/s10853-010-4209-x

    Article  CAS  Google Scholar 

  32. Jha A, Jeong DW, Shim JO, Jang WJ, Lee YL, Rode CV, Roh HS (2015) Hydrogen production by the water–gas shift reaction using CuNi/Fe2O3 catalyst. Catal Sci Technol 5:2752–2760

    CAS  Google Scholar 

  33. Matsunaga K, Kuwabara A (2007) First-principles study of vacancy formation in hydroxyapatite. Phys Rev B 75:014102–014110

    Google Scholar 

  34. Chen C, Zhou Y, Wang N, Cheng L, Ding H (2015) Cu2(OH)PO4/g-C3N4 composite as an efficient visible light-activated photo-Fenton photocatalyst. RSC Adv 5:95523–95531

    CAS  Google Scholar 

  35. Song L, Cao X, Li L (2018) Engineering stable surface oxygen vacancies on ZrO2 by hydrogen-etching technology: an efficient support of gold catalysts for water–gas shift reaction. ACS Appl Mater Interfaces 10:31249–31259

    CAS  Google Scholar 

  36. Molina R, Poncelet G (1999) α-Alumina-supported nickel catalysts prepared with nickel acetylacetonate. 2. A study of the thermolysis of the metal precursor. J Phys Chem B 103:11290–11296

    CAS  Google Scholar 

  37. Rodriguez NM, Kim MS, Baker RTK (1993) Deactivation of copper nickel-catalysts due to changes in surface composition. J Catal 140:16–29

    CAS  Google Scholar 

  38. Gonzalez-Elipe AR, Munuera G, Espinos JP (1990) XPS intensities and binding energy shifts as metal dispersion parameters in Ni/SiO2 catalysts. Surf Interface Anal 16:375–379

    CAS  Google Scholar 

  39. Naghash AR, Etsell TH, Xu S (2006) XRD and XPS study of Cu−Ni interactions on reduced copper−nickel−aluminum oxide solid solution catalysts. Chem Mater 18:2480–2488

    CAS  Google Scholar 

  40. Lee SY, Mettlach N, Nguyen N, Sun YM, White JM (2003) Copper oxide reduction through vacuum annealing. Appl Surf Sci 206:102–109

    CAS  Google Scholar 

  41. Boukha Z, Ayastuy JL, Cortés-Reyes M, Alemany LJ, González-Velasco JR, Gutiérrez-Ortiz MA (2019) Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H2-rich stream. Int J Hydrogen Energy 44:12649–12660

    CAS  Google Scholar 

  42. Roh H, Jun K, Dong W, Park S, Joe Y (2001) Partial oxidation of methane over Ni/θ-Al2O3 catalysts. Chem Lett 7:666–667

    Google Scholar 

  43. Prins R (2012) Hydrogen spillover. Facts and fiction. Chem Rev 112:2714–2738

    CAS  Google Scholar 

  44. Jun JH, Lee TJ, Lim TH, Nam SW, Hong SA, Yoon KJ (2004) Nickel–calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation. J Catal 221:178–190

    CAS  Google Scholar 

  45. Chen LF, Guo PJ, Zhu LJ, Qiao MH, Shen W, Xu HL, Fan KN (2009) Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl Catal A Gen 356:129–136

    CAS  Google Scholar 

  46. Aguila G, Valenzuela A, Guerrero S, Araya P (2013) WGS activity of a novel Cu–ZrO2 catalyst prepared by a reflux method. Comparison with a conventional impregnation method. Catal Commun 39:82–85

    CAS  Google Scholar 

  47. Qu Y, Sun D, Chen Y, Wang Y (2014) Possible sites of copper located on hydroxyapatite structure and the identification of active sites for formaldehyde oxidation. J Mol Catal A Chem 393:182–190

    CAS  Google Scholar 

  48. Tounsi H, Djemal S, Petitto C, Delahay G (2011) Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl Catal B Environ 107:158–163

    CAS  Google Scholar 

  49. Jemal J, Tounsi H, Chaari K, Petitto C, Delahay G, Djemel S, Ghorbel A (2012) NO reduction with NH3 under oxidizing atmosphere on copper loaded hydroxyapatite. Appl Catal B Environ 113–114:255–260

    Google Scholar 

  50. Dragoi B, Ungureanu A, Chirieac A, Ciotonea C, Rudolf C, Royer S, Dumitriu E (2015) Structural and catalytic properties of mono- and bimetallic nickel–copper nanoparticles derived from MgNi(Cu)Al-LDHs under reductive conditions. Appl Catal A Gen 504:92–102

    CAS  Google Scholar 

  51. Chen CS, Lin JH, Lai TW, Li BH (2009) Active sites on Cu/SiO2 prepared using the atomic layer epitaxy technique for a low-temperature water–gas shift reaction. J Catal 263:155–166

    CAS  Google Scholar 

  52. Shi D, Wojcieszak R, Paul S, Marceau E (2019) Ni promotion by Fe: what benefits for catalytic hydrogenation? Catalysts 9:451–478

    CAS  Google Scholar 

  53. Ang ML, Oemar U, Saw ET, Mo L, Kathiraser Y, Chia BH, Kawi S (2014) Highly active Ni/xNa/CeO2 catalyst for the water gas shift reaction: effect of sodium on methane suppression. ACS Catal 4:3237–3248

    CAS  Google Scholar 

  54. Kopyscinski J, Schildhauer TJ, Vogel F, Biollaz SMA, Wokaun A (2010) Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. J Catal 271:262–279

    CAS  Google Scholar 

  55. Gokhale AA, Dumesic JA, Mavrikakis M (2008) On the mechanism of low-temperature water gas shift. J Am Chem Soc 130:1402–1414

    CAS  Google Scholar 

  56. Huang SC, Lin CH, Wang JH (2010) Trends of water gas shift reaction on close packed transition metal surfaces. J Phys Chem C 114:9826–9834

    CAS  Google Scholar 

  57. Schumacher N, Boisen A, Dahl S, Gokhale A, Kandoi S, Grabow L et al (2005) Trends in low-temperature water–gas shift reactivity on transition metals. J Catal 229:265–275

    CAS  Google Scholar 

  58. van de Loosdrecht J, van der Kraan AM, van Dillen AJ, Geus JW (1997) Potassium-promoted titania-supported nickel–iron catalysts for Fischer–Tropsch synthesis. J Catal 170:217–226

    Google Scholar 

  59. Lim JY, McGregor J, Sederman AJ, Dennis JS (2016) The role of the Boudouard and water–gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst. Chem Eng Sci 152:754–766

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work provided by the Spanish Ministry of Economy and Competitiveness/Ministerio de Economía y Competitividad (ENE2016-74850-R) and the Basque Government/Gobierno Vasco (GV-2018-00038) is gratefully acknowledged. The authors also wish to express their gratitude for the technical and human support provided by SGIker of the UPV/EHU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Iriarte-Velasco.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 462 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iriarte-Velasco, U., Ayastuy, J.L., Bravo, R. et al. Biogenic hydroxyapatite as novel catalytic support for Ni and Cu for the water–gas shift reaction. J Mater Sci 56, 6745–6763 (2021). https://doi.org/10.1007/s10853-020-05724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05724-x

Navigation